中国科学院流感研究与预警中心解密H7N9流感病毒第5波疫情
本帖最后由 hantavirus 于 2018-5-11 09:29 编辑导读:
自2013年H7N9流感病毒出现以来,其已经造成了5波人感染疫情。截止目前已报道1567例H7N9感染病例,并造成615人死亡,感染致死率达39.2%。世界科学家争先寻求造成这种现象的原因。2018年3月21日,中国科学院流感研究与预警中心(CASCIRE)在线发表在国际病毒学杂志Journal of Virology上题为“New Threats from H7N9 Influenza Virus: Spread and Evolution of High- and Low-Pathogenicity Variants with High Genomic Diversity in Wave Five”(http://jvi.asm.org/content/early/2018/03/15/JVI.00301-18.long) 的研究论文,从病毒流行分布、流行模式和病毒遗传变异层面给出了答案。
研究背景
H7N9第5波疫情中,H7N9病毒造成了760余人感染,感染人数接近前4波疫情的总和。先前报道发现流行的H7N9是低致病性流感病毒,增强结合人唾液酸受体的能力。同样,流感病毒PB2基因蛋白上T271A、 K526R、 E627K 或 D701N 发生突变,能够增加哺乳动物的致病力和适应性。
H7N9第5波疫情中,出现时间比前四波要早,且有一个急剧的升高期,更加严重的是出现高致病性H7N9病毒感染人的病例出现。此外,家庭聚集性H7N9病例,及同一病房内传播病例报道,都提示出现H7N9病毒人之间传播的可能性。
Figure 1 The temporal distributions of H7N9 human infections during Wave Five.
CASCIRE自2013年H7N9出现,对其病毒溯源(Lancet,2013)、致病和跨种间传播分子机制(Science, 2013; Journal of Virology, 2015、2016)、耐药分子机制(Cell Research,2013)、基于耐药机制的抗流感新药开发(Journal of Medicinal Chemistry,2016)等一系列研究成果,而本研究为深入了解H7N9流感病毒流行传播和致病机制以及科学防控H7N9提供了理论依据。
Figure 2 The surveillance network of CASCIRE.
结果速览
流行分布:第5波疫情中H7N9病毒分布较以往更为广泛,全国除宁夏、青海和海南省外,都有人或家禽感染H7N9病毒的现象。而且人感染病例由以往以长三角和珠三角地区为主,向周边省份扩散;
Figure 3 The spatial distributions of H7N9 human infections during Wave Five.
病毒的遗传多样性:
1) 深入研究发现HP-H7N9起源于G1基因型LP-H7N9,其在HA裂解位点处发生插入性突变(插入了“KRTA”氨基酸基序)形成了含有多个碱性氨基酸裂解位点的HP-H7N9,在此基础上进化形成了4种HP-H7N9 HA裂解位点基序,即PKGKRTAR/G、PKGKRIAR/G、PKRKRAAR/G和PKRKRTAR/G。有意思的是,近一半HP-H7N9病毒属于G3基因型。2)值得注意的是,除人源H7N9病毒外,几乎所有非人源H7N9病毒分离株都含有哺乳动物适应性突变(PB2基因K526R、A588V或E627K突变),并且个别禽源H7N9病毒株还发现有神经氨酸酶抑制类药物(NAIs)耐药性突变(NA基因R292K突变)。
Figure 4 Distinctive amino acid variations in HA and NA of HP-H7N9 compared to LP-H7N9.
2)H7N9亚型低致病力禽流感病毒(LP-H7N9)和高致病力禽流感病毒(HP-H7N9)全基因组均表现出动态重配,编码病毒囊膜蛋白HA和NA的基因,在不同谱系(长江系和珠江系)间重配。
Figure 5 Phylogenies of HA and NA genes of H7N9 viruses from different waves.
3)内部基因与H9N2/H7N9、H6亚型等流感病毒发生重配导致形成了至少36种基因型,其中进化出3种优势基因型G1(A/chicken/Jiangsu/SC537/2013-like)、G3(A/Chicken/Zhongshan/ZS/2017-like)和G11(A/Anhui/40094/2015-like)。
Figure 6 Schematic representation of evolutionary pathway of the H7N9 viruses during Wave Five.
ABSTRACT
H7N9 virus has caused five infection waves since it emerged in 2013. The highest number of human cases was seen in Wave Five; however, the underlying reasons have not been thoroughly elucidated. In this study, the geographical distribution, phylogeny and genetic evolution of 240 H7N9 viruses in Wave Five, including 35 new isolates from patients and poultry in nine provinces, were comprehensively analyzed together with strains from first four waves. Geographical distribution analysis displayed the newly-emerging highly pathogenic (HP) and low pathogenic (LP) H7N9 viruses were co-circulating, causing human and poultry infections across China. Genetic analysis indicated that dynamic reassortment of the internal genes among LP-H7N9/H9N2/H6Ny and HP-H7N9, as well as the surface genes between Yangtze and Pearl River Delta lineages resulted in at least 36 genotypes, with three major genotypes (G1, A/chicken/Jiangsu/SC537/2013-like, G3, A/Chicken/Zhongshan/ZS/2017-like and G11, A/Anhui/40094/2015-like). The HP-H7N9 likely evolved from G1 LP-H7N9 by the insertion of a “KRTA” motif at the cleavage site (CS), then evolved into fifteen genotypes with four different CS motifs including PKGKRTAR/G, PKGKRIAR/G, PKRKRAAR/G and PKRKRTAR/G. Approximately 46% (28/61) of HP strains belonged to G3. Importantly, neuraminidase (NA) inhibitor resistance (R292K in NA) and mammalian adaptation (eg. E627K and A588V in PB2) mutations were found in a few non-human-derived HP-H7N9 strains. In summary, the enhanced prevalence and diverse genetic characteristics with mammalian-adapted and NAI-resistant mutations may have contributed towards increased numbers of human infections in Wave Five.
参考文献
1. Belser JA, Bridges CB, Katz JM, Tumpey TM. 2009. Past, present, and possible future human infection with influenza virus A subtype H7. Emerg Infect Dis 15:859-865.
2. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y. 2013. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368:1888-1897.
3. Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, Bi Y, Wu Y, Li X, Yan J, Liu W, Zhao G, Yang W, Wang Y, Ma J, Shu Y, Lei F, Gao GF. 2013. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet 381:1926-1932.
结语
LP-H7N9和HP-H7N9的广泛流行,大量毒株携带哺乳动物适应性位点突变,以及耐药位点突变现象的增多,贡献了第5波H7N9疫情感染人数的激增。本研究得到国家重点研发计划、国家科技重大专项、973项目等资金的资助。CASCRIE监测网点合作单中国疾病预防控制中心病毒所预防控制所全传松博士、监测网点合作单位泰山医学院史卫峰教授、深圳市第三人民医院杨扬博士为共同第一作者,CASCIRE主任高福院士和流感技术平台负责人毕玉海博士是共同通讯作者。
文献全文下载链接如下,尊重版权,仅供学习,请勿他用:
链接:https://pan.baidu.com/s/18TjsiW-0qJEKLKWpOOT7jQ 密码:qlvu
页:
[1]