Springer等[ 9]通过PCR的方法检测了803例侵袭性曲霉病患者的全血和血清标本中的曲霉菌 ITS1 -5 .8 S rRNA后发现,全血标本中曲霉菌检测阳性率可达到85%,略好于血清标本的79%。使用通用引物扩增检测细菌16 S rRNA基因,再进行基因序列测定、计算机分析和比对,最终鉴定病原微生物,其核酸扩增反应体系条件较易掌控,应用范围广,可以发现新的菌种。Karah等[ 10]对2005至2007年挪威的113例不动杆菌属血流感染患者研究发现,使用PCR方法可以快速检测血培养阳性瓶中的鲍曼不动杆菌等。对于碳青霉烯类常见的耐药突变基因 bla OXA-51 -like进行测序,有助于早期报告耐药菌以提示临床合理用药。对全麻拔牙患者的血流感染风险研究显示,使用通用引物检测全血标本中的16 S rRNA,结合焦磷酸测序技术可以很好的发现草绿色链球菌等,对于评估血流感染有重要意义[ 11]。Jeng等[ 12]在对血流感染病例的研究中发现,使用高分辨率熔解曲线分析(high-resolution melt analysis,HRMA) PCR检测沙门菌的16 S rRNA可有效地检出致病菌。
由德国公司开发的SepsiTestTM 检测试剂盒,采用3对引物特异性地扩增全血标本中致病菌的16 S rRNA、18 S rRNA序列,通过测序后在线BLAST比对便可以准确地鉴定血流感染致病菌。随着测序技术的不断发展和16 S rRNA数据库的不断完善,基于细菌16 S rRNA基因的PCR扩增与测序分析在临床细菌分类和鉴定中的应用会越来越广,尤其在临床少见菌、苛养菌以及固体培养基不生长细菌的鉴定、检测和新菌种发现方面具有独特优势。
除了基因分析,蛋白组学作为一种日益重要的技术已应用于病原微生物的鉴定和分型分析。近年来,基质辅助激光解吸电离飞行时间质谱(matrix assisted laser desorption ionization time off light mass spectrometry, MALDI-TOF MS)技术在细菌和真菌等微生物鉴定中的应用受到广泛关注[ 22]。质谱技术主要是利用特定离子源将待测标本转变为运动的离子,这些离子根据质量/电荷比的不同,在电场或磁场作用下得到分离,并用检测器记录各种离子的相对强度,形成质谱图,通过与已知数据库进行匹配,匹配率最高的为未知微生物的鉴定结果。它具有高敏感性、高通量和快速的特点,但由于其对未知微生物的鉴定是通过所获得的质谱图与已知数据库进行匹配分析来实现的,不同的标本制备方法对获得的待测标本质谱信息有明显影响,而相关数据库的构成和质量则影响鉴定的准确性。
参考文献
[1] Skvarc M, Stubljar D, Rogina P, et al. Non-culture-based methods to diagnose bloodstream infection: does it work[J]. Eur J Microbiol Immunol (Bp), 2013, 3(2): 97-104.
[2] Afshari A, Schrenzel J, Ieven M, et al. Bench-to-bedside review: rapid molecular diagnostics for bloodstream infection-a new frontierr[J]. Crit Care, 2012, 16(3): 222.
[3] Loonen AJ, de Jager CP, Tosserams J, et al. Biomarkers and molecular analysis to improve bloodstream infection diagnostics in an emergency care unit[J]. PLoS One, 2014, 9(1): e87315.
[4] Deck MK, Anderson ES, Buckner RJ, et al. Multicenter evaluation of the Staphylococcus QuickFISH method for simultaneous identification of Staphylococcus aureus and coagulase-negative staphylococci directly from blood culture bottles in less than 30 minutes[J]. J Clin Microbiol, 2012, 50(6): 1994-1998.
[5] Forrest GN, Roghmann MC, Toombs LS, et al. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy[J]. Antimicrob Agents Chemother, 2008, 52(10): 3558-3563.
[6] Forrest GN, Mehta S, Weekes E, et al. Impact of rapid in situ hybridization testing on coagulase-negative staphylococci positive blood cultures[J]. J Antimicrob Chemother, 2006, 58(1): 154-158.
[7] Pasko C, Hicke B, Dunn J, et al. Staph ID/R: a rapid method for determining staphylococcus species identity and detecting the mecA gene directly from positive blood culture[J]. J Clin Microbiol, 2012, 50(3): 810-817.
[8] Sidor IF, Dunn JL, Tsongalis GJ, et al. A multiplex real-time polymerase chain reaction assay with two internal controls for the detection of Brucella species in tissues, blood, and feces from marine mammals[J]. J Vet Diagn Invest, 2013, 25(1): 72-81.
[9] Springer J, Morton CO, Perry M, et al. Multicenter comparison of serum and whole-blood specimens for detection of Aspergillus DNA in high-risk hematological patients[J]. J Clin Microbiol, 2013, 51(5): 1445-1450.
[10] Karah N, Haldorsen B, Hegstad K, et al. Species identification and molecular characterization of Acinetobacter spp. blood culture isolates from Norway[J]. J Antimicrob Chemother, 2011, 66(4): 738-744.
[11] Benítez-Páez A, Álvarez M, Belda-Ferre P, et al. Detection of transient bacteraemia following dental extractions by 16S rDNA pyrosequencing: a pilot study[J]. PLoS One, 2013, 8(3): e57782.
[12] Jeng K, Yang S, Won H, et al. Application of a 16S rRNA PCR-high-resolution melt analysis assay for rapid detection of Salmonella Bacteremia[J]. J Clin Microbiol, 2012, 50(3): 1122-1124.
[13] Steindor M, Weizenegger M, Harrison N, et al. Use of a commercial PCR-based line blot method for identification of bacterial pathogens and the mecA and van genes from BacTalert blood culture bottles[J]. J Clin Microbiol, 2012, 50(1): 157-159.
[14] Hansen WL, Beuving J, Verbon A, et al. One-day workflow scheme for bacterial pathogen detection and antimicrobial resistance testing from blood cultures[J]. J Vis Exp, 2012, 9(65): 3254.
[15] Dark P, Wilson C, Blackwood B. Accuracy of LightCycler(R) SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review protocol[J]. BMJ Open, 2012, 2(1): e000392.
[16] Laakso S, Mäki M. Assessment of a semi-automated protocol for multiplex analysis of sepsis-causing bacteria with spiked whole blood samples[J]. Microbiologyopen, 2013, 2(2): 284-292.
[17] Lucignano B, Ranno S, Liesenfeld O, et al. Multiplex PCR allows rapid and accurate diagnosis of bloodstream infections in newborns and children with suspected sepsis[J]. J Clin Microbiol, 2011, 49(6): 2252-2258.
[18] Wojewoda CM, Sercia L, Navas M, et al. evaluation of the Verigene Gram-positive blood culture nucleic acid test for rapid detection of bacteria and resistance determinants[J]. J Clin Microbiol, 2013, 51(7): 2072-2076.
[19] Pichon B, Hill R, Laurent F, et al. Development of a real-time quadruplex PCR assay for simultaneous detection of nuc, Panton-Valentine leucocidin (PVL), mecA and homologue mecALGA251[J]. J Antimicrob Chemother, 2012, 67(10): 2338-2341.
[20] Wang HY, Kim S, Kim H, et al. Real-time PCR TaqMan assay for rapid screening of bloodstream infection[J]. Ann Clin Microbiol Antimicrob, 2014, 13(1): 3.
[21] Samuel LP, Tibbetts RJ, Agotesku A, et al. evaluation of a microarray-based assay for rapid identification of Gram-positive organisms and resistance markers in positive blood cultures[J]. J Clin Microbiol, 2013, 51(4): 1188-1192.
[22] Schubert S, Weinert K, Wagner C, et al. Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry[J]. J Mol Diagn, 2011, 13(6): 701-706.
[23] Jeng K, Gaydos CA, Blyn LB, et al. Comparative analysis of two broad-range PCR assays for pathogen detection in positive-blood-culture bottles: PCR-high-resolution melting analysis versus PCR-mass spectrometry[J]. J Clin Microbiol, 2012, 50(10): 3287-3292.
[24] Jordana-Lluch E, Carolan HE, Giménez M, et al. Rapid diagnosis of bloodstream infections with PCR followed by mass spectrometry[J]. PLoS One, 2013, 8(4): e62108.
[25] Kok J, Thomas LC, Olma T, et al. Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization SepsityperTM and time of flight mass spectrometry[J]. PLoS One, 2011, 6(8): e23285.
[26] Feasey NA, Banada PP, Howson W, et al. evaluation of Xpert MTB/RIF for detection of tuberculosis from blood samples of HIV-infected adults confirms Mycobacterium tuberculosis bacteremia as an indicator of poor prognosis[J]. J Clin Microbiol, 2013, 51(7): 2311-2316.
[27] Banada PP, Koshy R, Alland D. Detection of Mycobacterium tuberculosis in blood by use of the Xpert MTB/RIF assay[J]. J Clin Microbiol, 2013, 51(7): 2317-2322.
[28] Fu Y, Yi Z, Wu X, et al. Circulating microRNAs in patients with active pulmonary tuberculosis[J]. J Clin Microbiol, 2011, 49(12): 4246-4251.