中国病毒学论坛|我们一直在坚持!

标题: [转移帖]美获得甲型流感病毒蛋白关键部位三维结构图 [打印本页]

作者: yafei    时间: 2016-2-2 16:15
标题: [转移帖]美获得甲型流感病毒蛋白关键部位三维结构图
原帖由论坛会员Rojjer发表于 2008-8-27 20:40 |

美国罗格斯大学和德州大学的研究人员8月25日表示,他们成功获得流感病毒蛋白关键部位的三维结构图,该成果有望帮助科学家开发应对包括致命性禽流感在内的多种流感的药物。

流感病毒通常依靠病毒蛋白某部分同人体中特定蛋白的结合来侵入人体,因为通过这样的结合,流感病毒能够抑制人体本身对病毒感染的自然防御体系,为病毒有效地在人体内复制铺平道路。据悉,美国这两所大学的研究人员获得的是甲型流感病毒NS1蛋白上与人体蛋白目标相结合部分的三维结构图。他们表示,所有从人体分离出的甲型流感病毒,其中包括禽流感病毒和1918年大流行感冒病毒,都有NS1蛋白。

大约在10年前,德州大学的罗伯特·克鲁格教授发现NS1蛋白能够同人体蛋白CPSF30相结合,而CPSF30蛋白在保护人体细胞免受流感病毒感染方面具有重要作用。一旦CPSF30蛋白被NS1蛋白“缠上”,它将不再产生能够抵御流感病毒复制的分子。

利用X射线晶体成像技术,克鲁格教授和罗格斯大学吉他诺·蒙特莱恩教授领导的研究小组获得了NS1蛋白与人体CPSF30蛋白结合部位的三维结构图。罗格斯大学的卡尔延·达斯教授表示:“X射线晶体结构让人们能够在原子水平以独特的视角观察NS1和人体蛋白的结合,并了解它如何抑制人体重要的抗病毒反应。”

为证实NS1蛋白结合部位在流感病毒复制过程中的重要作用,研究小组成员对蛋白结合部位的一个单一氨基酸进行了基因工程改造,从而剔除了该蛋白结合人体蛋白的能力。随后,他们培育出具有变异NS1蛋白的流感病毒,并发现它不能阻断人体内部的抗病毒系统,极大地降低了其感染人体细胞的能力。

蒙特莱恩教授表示:“我们的工作揭示了可导致人类流行病和高死亡率大流感的甲型流感病毒的‘阿喀琉斯之踵’(源自希腊神话,意即致命弱点)。”他认为,病毒蛋白结合部位结构的确认将帮助人们开发出有效应对流感疾病的药物。

转自:科学网:http://www.sciencenet.cn/htmlnews/2008/8/210428.html
作者: yafei    时间: 2016-2-2 16:18
Rojjer发表于 2008-8-27 21:12 |
CPSF30:切割与多腺苷酸化特异因子(cleavage and polyadenylation specificity factor,CPSF) 30-kDa 亚基.
NS1 通过结合切割与多腺苷酸化特异因子(cleavage and polyadenylation specificity factor,CPSF) 30-kDa 亚基阻断IFN-βmRNA 的转录后加工.达到干扰宿主天然免疫反应进而干扰获得性免疫的作用.当然这只是NS1抵抗机体免疫系统的机制之一.


查了两篇关于 CPSF30 的文献:

1,Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3' end processing of cellular pre-mRNAS

NOAH Diana L. ; TWU Karen Y. ; KRUG Robert M. ;

     The influenza A virus NSI protein (NSIA protein) binds and inhibits the function of the 30-kDa subunit of CPSF, a cellular factor that is required for the 3'-end processing of cellular pre-mRNAs. Here we generate a recombinant influenza A/Udorn/72 virus that encodes an NS1A protein containing a mutated binding site for the 30-kDa subunit of CPSF. This mutant virus is substantially attenuated, indicating that this binding site in the NSIA protein is required for efficient virus replication. Using this mutant virus, we show that NSIA binding to CPSF mediates the viral posttranscriptional countermeasure against the initial cellular antiviral response-the interferon-α/β (IFN-α/ β)-independent activation of the transcription of cellular antiviral genes, which requires the interferon regulatory factor-3 (IRF-3) transcription factor that is activated by virus infection. Whereas the posttranscriptional processing of these cellular antiviral pre-mRNAs is inhibited in cells infected by wild-type influenza A virus, functional antiviral mRNAs are produced in cells infected by the mutant virus. These results establish that the binding of 30-kDa CPSF to the NS I A protein is largely responsible for the posttranscriptional inhibition of the processing of these cellular antiviral pre-mRNAs. Mutation of this binding site in the NS I A protein also affects a second cellular antiviral response: in cells infected by the mutant virus, IFN-β mRNA is produced earlier and in larger amounts.


2,The CPSF30 Binding Site on the NS1A Protein of Influenza A Virus Is a Potential Antiviral Target

Karen Y. Twu, Diana L. Noah, Ping Rao, Rei-Lin Kuo, and Robert M. Krug*
Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712

     The emergence of influenza A viruses resistant to the two existing classes of antiviral drugs highlights the need for additional antiviral drugs, particularly considering the potential threat of a pandemic of H5N1 influenza A viruses. Here, we determine whether influenza A virus replication can be selectively inhibited by blocking the ability of its NS1A protein to inhibit the 3'-end processing of cellular pre-mRNAs, including beta interferon (IFN-ß) pre-mRNA. Pre-mRNA processing is inhibited via the binding of the NS1A protein to the cellular CPSF30 protein, and mutational inactivation of this NS1A binding site causes severe attenuation of the virus. We demonstrate that binding of CPSF30 is mediated by two of its zinc fingers, F2F3, and that the CPSF30/F2F3 binding site on the NS1A protein extends from amino acid 144 to amino acid 186. We generated MDCK cells that constitutively express epitope-tagged F2F3 in the nucleus, although at only approximately one-eighth the level of the NS1A protein produced during virus infection. Influenza A virus replication was inhibited in this cell line, whereas no inhibition was observed with influenza B virus, whose NS1B protein lacks a binding site for CPSF30. Influenza A virus, but not influenza B virus, induced increased production of IFN-ß mRNA in the F2F3-expressing cells. These results, which indicate that F2F3 inhibits influenza A virus replication by blocking the binding of endogenous CPSF30 to the NS1A protein, point to this NS1A binding site as a potential target for the development of antivirals directed against influenza A virus


[ 本帖最后由 Rojjer 于 2008-8-27 21:16 编辑


[attach]1843[/attach]







欢迎光临 中国病毒学论坛|我们一直在坚持! (http://virology.com.cn/) Powered by Discuz! X3.2