来自Walter Reed Army Institute ofResearch, the Beth Israel Deaconess Medical Center 和Harvard Medical School的科学家测试了两种疫苗在老鼠中的保护作用。结果发现,两种疫苗均具有很好的保护作用。
一种为纯化的灭活疫苗,一种为质粒DNA疫苗。作者: ipsvirus 时间: 2016-7-10 14:58 Vaccine protection against Zika virus from Brazil
Rafael A. Larocca, Peter Abbink, Jean Pierre S. Peron, Paolo M. de A. Zanotto, M. Justin Iampietro, Alexander Badamchi-Zadeh, Michael Boyd, David Ng’ang’a, Marinela Kirilova, Ramya Nityanandam, Noe B. Mercado, Zhenfeng Li, Edward T. Moseley, Christine A. Bricault, Erica N. Borducchi, Patricia B. Giglio, David Jetton, George Neubauer, Joseph P. Nkolola, Lori F. Maxfield, Rafael A. De La Barrera, Richard G. Jarman, Kenneth H. Eckels, Nelson L. Michael, Stephen J. Thomas & Dan H. Barouch
Zika virus (ZIKV) is a flavivirus that is responsible for an unprecedented current epidemic in Brazil and the Americas1,2. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans3-8 and mice9-11. The rapid development of a safe and effective ZIKV vaccine is a global health priority1,2, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization of a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a ZIKV outbreak strain from northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice11. We produced DNA vaccines expressing full-length ZIKV pre-membrane and envelope (prM-Env) as well as a series of deletion mutants. The full-length prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV as measured by absence of detectable viremia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and CD4 and CD8 T lymphocyte depletion in vaccinated mice did not abrogate protective efficacy. These data demonstrate that protection against ZIKV challenge can be achieved by single-shot subunit and inactivated virus vaccines in mice and that Env-specific antibody titers represent key immunologic correlates of protection. Our findings suggest that the development of a ZIKV vaccine for humans will likely be readily achievable.