作者: wwwkkk83 时间: 2021-7-11 10:08 https://www.nejm.org/doi/full/10.1056/NEJMc2103022
NEJM原文摘录:We next evaluated pseudovirus resistance to neutralization using convalescent serum obtained from 34 patients 5 months after infection with coronavirus disease 2019 (Covid-19) and serum from 50 participants obtained 2 to 3 weeks after receipt of the second dose of inactivated-virus vaccines — BBIBP-CorV (Sinopharm)1 or CoronaVac (Sinovac)2 — which were developed in China (Table S1 in the Supplementary Appendix). We first determined the serum neutralizing-antibody titer against wild-type pseudovirus and observed similar geometric mean titers (GMTs) in serum obtained from convalescent patients and from vaccinees (Figure 1A), which suggested a low antibody response after two-dose inoculation induced by BBIBP-CorV or CoronaVac.1,2 Notably, undetectable neutralization titers were seen in 4 of 34 convalescent serum samples, in 6 of 25 BBIBP-CorV serum samples, and in 4 of 25 CoronaVac serum samples.
We next assessed the neutralizing activity of convalescent serum and vaccinee serum against D614G, B.1.1.7, and B.1.351 variants as compared with wild-type pseudovirus. The convalescent serum was significantly more effective (by a factor of 2.4; 95% confidence interval [CI], 1.9 to 3.0) in neutralizing the D614G pseudovirus, had a similar effect to that of the wild-type virus in neutralizing the B.1.1.7 variant, and was significantly less effective (by a factor of 0.5; 95% CI, 0.4 to 0.7) in neutralizing the B.1.351 pseudovirus (Figure 1B). Moreover, 9 of 30 convalescent serum samples showed complete loss of neutralizing activity against B.1.351. For the BBIBP-CorV vaccinee serum samples, although the GMTs of neutralization against the variants were not significantly different from the GMTs against the wild-type virus, 20 serum samples showed complete or partial loss of neutralization against B.1.351 (Figure 1C). For the CoronaVac vaccinee serum samples, we observed a marked decrease in the GMTs in the serum neutralization of B.1.1.7 (by a factor of 0.5; 95% CI, 0.3 to 0.7) and B.1.351 (by a factor of 0.3; 95% CI, 0.2 to 0.4). In addition, most of the serum samples showed complete or partial loss of neutralization against B.1.351 (Figure 1D).
Our findings suggest that B.1.1.7 showed little resistance to the neutralizing activity of convalescent or vaccinee serum, whereas B.1.351 showed more resistance to the neutralization of both convalescent serum (by a factor of 2) and vaccinee serum (by a factor of 2.5 to 3.3) than the wild-type virus. Most of the vaccinee serum samples that were tested lost neutralizing activity, a finding that was consistent with the results of other recent studies of neutralization by convalescent serum or serum obtained from recipients of messenger RNA or BBIBP-CorV vaccines.3-5 Our findings also highlight the importance of sustained viral monitoring and evaluation of the protective efficacy of vaccines in areas where variants are circulating.
Guo-Lin Wang, Ph.D.
Beijing Institute of Microbiology and Epidemiology, Beijing, China
Zhuang-Ye Wang, B.Med.
Dezhou Center for Disease Control and Prevention, Dezhou, China
Li-Jun Duan, B.Sc.
Beijing Institute of Microbiology and Epidemiology, Beijing, China
Qing-Chuan Meng, B.Med.
Ningjin County Community Health Service Center, Dezhou, China
Ming-Dong Jiang, M.Med.
Jing Cao, M.Med.
Dezhou Center for Disease Control and Prevention, Dezhou, China
Lin Yao, B.Med.
Ka-Li Zhu, B.Med.
Wu-Chun Cao, Ph.D.
Mai-Juan Ma, Ph.D.
Beijing Institute of Microbiology and Epidemiology, Beijing, China作者: wwwkkk83 时间: 2021-7-11 12:49
北大生物医学前沿创新中心谢晓亮团队揭示不同类型新冠疫苗对突变株体液免疫应答情况
2021年5月21日,北京大学,首都医科大学及中国食品药品监督管理局等多单位合作,谢晓亮,曹云龙,秦成峰,王佑春,冯英梅及肖俊宇共同通讯在Cell Research 在线发表题为“Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines”的研究论文,该研究报告了对循环SARS-CoV-2变体(例如501Y.V2(B.1.351))的血浆和由CoronaVac(灭活疫苗),ZF2001(RBD亚单位疫苗)和自然感染引起的中和抗体(NAb)的体液免疫反应。
参考文献 :Cao, Y., Yisimayi, A., Bai, Y. et al. Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines. Cell Res 31, 732–741 (2021). https://doi.org/10.1038/s41422-021-00514-9