标题: Rab7A Is Required for Efficient Production of Infectious HIV-1 [打印本页] 作者: marine0425030 时间: 2015-2-3 22:47 标题: Rab7A Is Required for Efficient Production of Infectious HIV-1 Rab7A Is Required for Efficient Production of Infectious HIV-1.
Caillet M, Janvier K, Pelchen-Matthews A, Delcroix-Genête D, Camus G, Marsh M, Berlioz-Torrent C.
PLoS Pathog. 2011 Nov;7(11):e1002347. Epub 2011 Nov 3.
Abstract Top
Retroviruses take advantage of cellular trafficking machineries to assemble and release new infectious particles. Rab proteins regulate specific steps in intracellular membrane trafficking by recruiting tethering, docking and fusion factors, as well as the actin- and microtubule-based motor proteins that facilitate vesicle traffic. Using virological tests and RNA interference targeting Rab proteins, we demonstrate that the late endosome-associated Rab7A is required for HIV-1 propagation. Analysis of the late steps of the HIV infection cycle shows that Rab7A regulates Env processing, the incorporation of mature Env glycoproteins into viral particles and HIV-1 infectivity. We also show that siRNA-mediated Rab7A depletion induces a BST2/Tetherin phenotype on HIV-1 release. BST2/Tetherin is a restriction factor that impedes HIV-1 release by tethering mature virus particles to the plasma membrane. Our results suggest that Rab7A contributes to the mechanism by which Vpu counteracts the restriction factor BST2/Tetherin and rescues HIV-1 release. Altogether, our results highlight new roles for a major regulator of the late endocytic pathway, Rab7A, in the late stages of the HIV-1 replication cycle.
Author Summary Top
Human immunodeficiency virus (HIV) propagation requires the assistance of host cell factors at all stages of the infection cycle. HIV exploits components of the cellular membrane sorting machinery for its assembly, budding and release. Rab GTPases are key regulators of membrane-trafficking events, including exocytosis and endocytosis, in eukaryotic cells. Here we show that the late endosome associated Rab7A plays a major role in HIV-1 replication. We find that Rab7A regulates the production of infectious HIV-1 particles at two critical stages. First, Rab7A is required for efficient Env processing and, thus, for the incorporation of mature HIV-1 envelope glycoproteins into virions. Second, Rab7A contributes to the mechanism that counteracts the restriction imposed on HIV-1 release by the cellular restriction factor BST2/Tetherin that physically tethers viral particles to the plasma membrane of infected cells. Altogether these data highlight new roles for a major player of the late endocytic pathway, Rab7A, in the late stages of the HIV-1 replication cycle.