6、B细胞表位预测的方法及应用
线性表位的预测方法
B细胞表位的预测方法主要集中于线性表位,在二十世纪七、八十年代发展起来的大量的预测B细胞表位的算法都是基于蛋白质序列。这些算法包括:⑴蛋白质的亲水性算法(Hydrophilicity):认为蛋白质各氨基酸残基可分为亲水残基和疏水残基两类。在机体内,疏水性残基一般被埋在蛋白内部,而亲水性残基位于蛋白质表面,因此,蛋白的亲水部位与蛋白抗原表位有着密切的联系。Hopp-Woods(Hoop TP et al.,1981)算法为最常用的。⑵可及性算法(Accessibility):常用的有Janin可及性参数,即指蛋白质抗原中氨基酸残基被溶剂分子接触的可能性(Rudolph R et al.,1990)。它反映了蛋白质抗原各个氨基酸残基的分布情况。⑶蛋白质可塑性算法(Flexibility):此算法认为蛋白质抗原构象的多肽链骨架具有一定程度的活动性,活动性强的氨基酸残基即可塑性大,易形成抗原表位(Karplus PA et al.,1985)。⑷蛋白质二级结构预测算法(Secondary structure):该算法认为蛋白质二级结构与蛋白质表位的分布关系密切。α螺旋、β折叠化学键键能比较高,形态固定,常处于蛋白质内部,难以与抗体嵌合,而β转角和无规则卷曲多处于蛋白质的表面,结构松散,易展示在蛋白质表面,有利于与抗体嵌合,成为抗原表位的可能性大(来鲁华,1993)。⑸蛋白质抗原性算法(Antigenicity):Welling(Welling GW.,1985)通过对20个已研究得很透的蛋白质的69个连续位点的606个氨基酸统计分析,用各氨基酸残基在已知B细胞表位中出现的百分率与其通常在蛋白质中出现的百分率比值的对数建立了抗原性刻度,并以此计算蛋白中各亚序列的抗原性。这些方法的代表软件有PEOPLE(Alix AJ et al.,1999)、PREDITOP(Pellequer JL et al.,1993)、BEPITOPE(Odorico M et al.,2003)、Bcepred(Saha S et al.,2004)等。但是最近Blythe及Flower(Blythe MJ et al.,2005)对氨基酸的性质与线性表位的关系做了一个评估,结果表明基于氨基酸序列信息来预测线性表位,即使很好的结合了氨基酸的各种性质,其预测结果仅略强于随机预测。近年来,一些应用隐形马尔可夫模型(HMM)、人工神经网络(ANN)、支持向量机算法(SVM)及其他技术的机器研究方法(Ponomarenko JV et al.,2007)已经被引入来预测B细胞表位,取得了较好的结果。代表软件有ABCpred(Saha S et al.,2006)、BepiPred(Larsen JEet al.,2006)、APP(Chen J et al.,2007)等。ABCpred采用人工神经网络来预测线性表位,从Bcipep和SwissProt数据库中提取非冗余的表位肽和非表位肽作为训练集,采用5-折交叉验证,预测敏感性约为67%,特异性约为64%。BepiPred结合氨基酸的性质(亲水性、柔韧性、可及性、极性、暴露表面、转角)和隐形马尔可夫模型来预测线性表位,预测结果表明,同那些仅依赖于氨基酸性质的预测方法相比,BepiPred预测结果的准确性有一定程度的提高。Chen et al.(2007)发现氨基酸通常成对出现在抗原表位的频率要比其出现在非表位肽段的频率高,基于此,并联合支持向量机算法建立了APP方法。应用此方法在872个表位肽和872个非表位肽数据集中,采用5-折交叉验证,预测准确度为71%。Yasser EL-Manzalawy(EL-Manzalawy Y et al.,2008)等采用同一数据集对这三种方法进行比较,结果表明ABCpred预测表位的准确性略高于BepiPred及APP。
构象表位的预测方法目前,绝大多数B细胞表位预测方法都是基于蛋白质的一级或二级结构的,但这些方法只能用来预测由连续的氨基酸残基构成的线性表位,而基于蛋白质的三级结构来预测构象表位的方法比较少,这是因为各种抗原的构象表位可获得的数据要远远少于线性表位,并且到目前为止,几乎没有哪个抗原的所有的表位都能够彻底的研究清楚(HasteAndersen P et al.,2006)。基于蛋白质三级结构来预测构象表位的方法CEP(Kulkarni-Kale U et al.,2005)(Conformational Epitope Prediction):这是第一个以抗原蛋白的三级结构PDB文件作为输入条件,以构象性表位预测为主要目的的网上免费服务软件。它提供了一个预测构象表位的web界面,这种方法除了能够预测构象表位,同时也能预测线性表位。它主要根据氨基酸残基的溶剂可及性及空间距离截值来预测表位,其公布的预测精度达75%。DiscoTope(Haste Andersen P et al.,2006):是通过蛋白质三级结构数据来预测构象表位的一种新方法,这种方法通过对X射线晶体衍射确定的76个抗原抗体复合物所组成的构象表位数据集进行大量统计度量、空间特征分析和表面可及性计算,对B细胞构象性表位进行预测,最终对组成蛋白序列的每个氨基酸打分,通过分值来反映某一氨基酸成为表位的可能性,并提供了阈值来确定组成表位的氨基酸残基。预测蛋白质与蛋白质相互作用位点的方法除以上两种方法之外,还有最近发展起来的一些预测蛋白质与蛋白质相互作用位点的方法。
由于抗原抗体之间的相互作用属于蛋白质与蛋白质之间相互作用中的一种,因此,可以参这些方法来预测B细胞表位。分子对接:主要用来研究分子间的相互作用与识别,进而预测复合物结构。常用的分子对接软件有ZDOCK(Chen R et al.,2003)、DOT(Shoichet BK et al.,1991)、DOCK(Mandell JG et al.,2001)、ClusPro(Comeau SR et al.,2004)等。其中ClusPro是一个提供网上服务的分子对接软件,其能够根据形状互补快速的筛选ZDOCK和DOT程序产生的对接结果,并对对接结果聚类,根据聚类情况对对接结果打分,最终返回10个得分最高的对接结果,再根据这些对接结果来确定蛋白质相互作用的位点。PPI-Pred(Bradford JR et al.,2005)(protein-protein interface prediction)将支持向量机的方法同曲面分析结合在一起预测蛋白质相互作用位点。ProMate(Neuvirth H et al.,2004)(Predicting the location of potential protein-protein binding sitesfor unbound proteins)是将一些蛋白质相互作用界面的重要性质综合起来预测蛋白质相互作用位点。这些性质包括:结合位点通常偏向位于β片层及非结构的链;芳香族氨基酸的侧链常会参与蛋白质与蛋白质的相互作用;疏水氨基酸和极性氨基酸常聚集在蛋白质与蛋白质相互作用的界面;以及在晶体结构中结合位点的周围有更多的水分子与之结合。Ponomarenko和Bourne采用以上几种方法预测构象表位并使用同一评估体系对其进行了比较,结果表明,这些方法的准确性均未超过40%,如果用ROC(Relative operating characteristic)曲线下面积的值来评估这些方法,则DiscoTope,和PPI-PRED的值大约是0.6,ClusPro的值高于0.65,但未超过0.7,而其它的方法接近于随机预测。尽管这些年来B细胞表位预测的方法得到了一定的发展和应用,但这些研究方法还存在一定的问题。首先,所有预测表位的方法都缺乏标准的ROC(Swets JAet al.,1988)评估,这使得各种预测方法的结果难以比较与评估;其次,大多数预测线性表位的方法都具有一定的局限性,它们仅仅是根据少数的几个表位的特征(氨基酸的性质,残基的表面可及性,空间分布,分子间接触)来预测表位,而最近对各种线性表位预测方法进行评估的结果表明,仅根据氨基酸的性质来预
测线性表位的方法并不可靠。要想提高预测的准确性,需将更多表位区别于非表位的特征结合起来预测;最后,目前预测表位的方法大多数是针对于线性表位的,而据研究表明(Barlow DJ etal.,1986)90%以上的表位为构象表位,因此在进一步完善线性B细胞表位预测研究的基础上,从蛋白质的三级结构入手,深入对构象性B细胞表位预测算法与程序的研究。同时,我们也相信随着PDB数据库中抗原抗体复合物的增加,能够对各种抗原的构象表位进行更广泛的分析,人们对蛋白质抗原表位的研究将更加透彻。
以上都是前辈们总结的,我只是借平台和同我一样迷茫的人们一起分享,希望有助于解决问题。但有一点,大多数软件预测得到的是线性表位,需要构像表位,最好结合噬菌体肽库筛选。
转自:http://blog.sina.com.cn/s/blog_565b7ff10100pqn3.html作者: ipsvirus 时间: 2015-7-1 17:35
#蜗牛也是牛