
 # are colored red.

Named selections will continue working after you have made changes to a molecular structure:

EXAMPLE

PyMOL> load $PYMOL_PATH/test/dat/pept.pdb
PyMOL> select bb, name c+o+n+ca # The named selection "bb"

 # is created.

PyMOL> count_atoms bb # PyMOL counts 52 atoms in "bb."

PyMOL> remove resi 5 # All atoms in residue 5 are removed
 # from the object "pept."

PyMOL> count_atoms bb # Now PyMOL counts
 # the remaining 48 atoms in "bb."

Named selections are static. Only atoms that exist at the time the selection is defined are included in the
selection, even if atoms which are loaded subsequently fall within the selection criterion:

EXAMPLE

PyMOL> load $PYMOL_PATH/test/dat/pept.pdb

PyMOL> select static_demo, pept # The named selection "static_demo"
 # is created to reference all atoms.

PyMOL> count_atoms static_demo # PyMOL counts 107 atoms
 # in "static_demo."

PyMOL> h_add # PyMol adds hydrogens in
 # the appropriate places

PyMOL> count_atoms static_demo # PyMOL still counts 107 atoms
 # in "static_demo,"

PyMOL> count_atoms # even though it counts 200 atoms
 # in "pept."

Named selections can also be used in subsequent atom selections:

EXAMPLE

PyMOL> select bb, name c+o+n+ca # An atom selection named "bb"
 # is made, consisting of all
 # atoms named "C","O","N", or "CA."

PyMOL> select c_beta_bb, bb or name cb
 # An atom selection named "c_beta_bb"
 # is made, consisting of
 # all atoms named "C", "O", "N", "CA" or "CB."

Note that the word "or" is used to select all atoms in the two groups, "bb" and "cb." The word "and" would
have selected no atoms because it is interpreted in its boolean logical sense, not its natural language sense. See
the subsection on "Selection Algebra" below.

Named Atom Selections 30

Single−word Selectors

The very simplest selection−expressions are single−word selectors. These selectors do not take identifiers;
they are complete by themselves.

Single Word
Selector

Short Form
Selector Description

all * All atoms currently loaded into PyMOL
none none No atoms (empty selection)
hydro h. All hydrogen atoms currently loaded into PyMOL
hetatm het All atoms loaded from Protein Data Bank HETATM records
visible v. All atoms in enabled objects with at least one visible representation

present pr. All atoms with defined coordinates in the current state
(used in creating movies)

The selector none won't come up much when you are typing commands directly into PyMOL, but it is useful
in programming scripts.

As the table shows, many single−word selectors have short forms to save on typing. Some short forms must
be followed by a period and a space, in order to delimit the word. Short forms and long forms have the same
effect, so choose the form that suits you:

EXAMPLES

PyMOL> color blue, all # It all turns blue.
PyMOL> color blue, *

PyMOL> hide hydro # Representations of all
PyMOL> hide h. # hydrogen atoms are hidden.

PyMOL> show spheres, hetatom # All the atoms defined as HETATOMS
PyMOL> show spheres, het # in the PDB input file

 # are represented as spheres.

Property Selectors

PyMOL reads data files written in PDB, MOL/SDF, Macromodel, ChemPy Model, and Tinker XYZ formats.
Some of the data fields in these formats allow PyMOL to assign properties to atoms. You can group and select
atoms according to these properties using property selectors and identifiers: the selectors correspond to the
fields in the data files, and the identifiers correspond to the target words to match, or the target numbers to
compare.

The items in a list of identifiers are separated by plus signs (+) only. Do not add spaces within a list of
identifiers. The selector resi takes (+)−separated lists of identifiers, as in

EXAMPLE

PyMOL> select nterm, resi 1+2+3

or, alternatively, it may take a range given with a dash:

EXAMPLE

Single−word Selectors 31

PyMOL> select nterm, resi 1−3

However, you will get an error message if you try to combine a list and a range in an identifier to a resi as in
"select mistake, resi 1−3+6."

The identifier for a blank field in an input file is and empty pair of quotes:

EXAMPLE

PyMOL> select unstruct, ss "" # A named selection is created
 # to contain all atoms that are not assigned
 # a secondary structure.

Most property selectors select matches to their identifiers:

Matching
Property
Selector

Short Form
Selector

Identifier
and Example

symbol e.

chemical−symbol−list
list of 1− or 2−letter chemical symbols from the
periodic table

PyMOL> select polar, symbol o+n

name n.

atom−name−list
list of up to 4−letter codes for atoms in proteins or
nucleic acids

PyMOL> select carbons, name ca+cb+cg+cd

resn r.

residue−name−list
list of 3−letter codes for amino acids

PyMOL> select aas, resn asp+glu+asn+gln

or list of up to 2−letter codes for nucleic acids

PyMOL> select bases, resn a+g

resi i.

residue−identifier−list
list of up to 4−digit residue numbers

PyMOL> select mults10, resi 1+10+100+1000

residue−identifier−range

PyMOL> select nterm, resi 1−10

alt alt

alternate−conformation−identifier−list
list of single letters

PyMOL> select altconf, alt a+""

chain c. chain−identifier−list
list of single letters or sometimes numbers

Single−word Selectors 32

PyMOL> select firstch, chain a

segi s.

segment−identifier−list
list of up to 4 letter identifiers

PyMOL> select ligand, segi lig

flag f.

flag−number
a single integer from 0 to 31

PyMOL> select f1, flag 0

 numeric_type nt.

type−number
a single integer

PyMOL> select type1, nt. 5

text_type tt.

type−string
a list of up to 4 letter codes

PyMOL> select subset, text_type HA+HC

id id

external−index−number
a single integer

PyMOL> select idno, id 23

index idx.

internal−index−number
a single integer

PyMOL> select intid, index 11

ss ss

secondary−structure−type
list of single letters

PyMOL> select allstrs, ss h+s+l+""

Other property selectors select by comparison to numeric identifiers:

Numeric
Selector Short Form Argument

&Example

b b

comparison−operator b−factor−value
a real number

PyMOL> select fuzzy, b > 10

q q

comparison−operator occupancy−value
a real number

PyMOL> select lowcharges, q <0.50

 formal_charge fc.

comparison−operator formal charge−value
an integer

PyMOL> select doubles, fc. = −1

 partial_charge pc.

comparison−operator partial charge−value
a real number

PyMOL> select hicharges, pc. > 1

Single−word Selectors 33

Details of the atom and residue name formats can be found in the official guide to PDB file formats,
http://www.rcsb.org/pdb/docs/format/pdbguide2.2/guide2.2_frame.html.

Selection Algebra

Selections can be made more precise or inclusive by combining them with logical operators, including the
boolean and, or and not. The boolean and selects only those items that have both (or all) of the named
properties, and the boolean or selects items that have either (or any) of them. Venn diagrams show that and
selects the areas of overlap, while or selects both areas.

Operators:

Selection operators and modifiers are listed below. The dummy variables s1 and s2 stand for
selection−expressions such as "chain a" or "hydro."

Operator Short
form Effect

not s1 ! s1
Selects atoms that are not included in s1

PyMOL> select sidechains, ! bb

s1 and s2 s1 & s2
Selects atoms included in both s1 and s2

PyMOL> select far_bb, bb &farfrm_ten

s1 or s2 s1 | s2
Selects atoms included in either s1 or s2

PyMOL> select all_prot, bb | sidechain

s1 in s2 s1 in s2

Selects atoms in s1 whose identifiers
name, resi, resn, chain and segi all match atoms in s2

PyMOL> select same_atms, pept in prot

s1 like s2 s1 l. s2

Selects atoms in s1 whose identifiers
name and resi match atoms in s2

PyMOL> select similar_atms, pept like prot

s1 gap X s1 gap X

Selects all atoms whose van der Waals radii are separated from the van der
Waals radii of s1 by a minimum of X Angstroms.

PyMOL> select farfrm_ten, resi 10 gap 5

s1 around X s1 a. X
Selects atoms with centers within X Angstroms of the center of any atom in s1

PyMOL> select near_ten, resi 10 around 5

s1 expand X s1 e. X
Expands s1 by all atoms within X Angstroms of the center of any atom in s1

PyMOL> select near_ten_x, near10 expand 3

Selection Algebra 34

 s1 within X of
s2

 s1 w. X
of s2

Selects atoms in s1 that are within X Angstroms of the s2

PyMOL> select bbnearten, bb w. 4 of resi 10

byres s1 br. s1
Expands selection to complete residues

PyMOL> select complete_res, br. bbnear10

byobject s1 bo. s1
Expands selection to complete objects

PyMOL> select near_obj, bo. near_res

neighbor s1 nbr. s1
Selects atoms directly bonded to s1

PyMOL> select vicinos, neighbor resi 10

Logical selections can be combined. For example, you might select atoms that are part of chain a, but not
residue number 125:

EXAMPLE

PyMOL> select chain a and (not resi 125) # selects atoms that are part of
 # chain a, but not
 # residue number 125.

PyMOL> select (name cb or name cg1 or name cg2) and chain A # These two
 # selections are

PyMOL> select name cb+cg1+cg2 and chain A # equivalent.
 # select c−beta's,
 # c−gamma−1's and
 # c−gamma−2's
 # that are
 # in chain A.

Like the results of groups of arithmetic operations, the results of groups of logical operations depend on which
operation is performed first. They have an order of precedence. To ensure that the operations are performed in
the order you have in mind, use parentheses:

 byres ((chain a or (chain b and (not resi 125))) around 5)

PyMOL will expand its logical selection out from the innermost parentheses.

Atom Selection Macros

Macros make it possible to represent a long atom selection phrase such as

PyMOL> select pept and segi lig and chain b and resi 142 and name ca

in a more compact form:

PyMOL> select /pept/lig/b/142/ca

An atom selection macro uses slashes to define fields corresponding to identifiers. The macro is used to select
atoms using the boolean "and," that is, the selected atoms must have all the matching identifiers:

 /object−name/segi−identifier/chain−identifier/resi−identifier/name−identifier

Atom Selection Macros 35

These identifiers form a hierarchy from the object−name at the top, down to the name−identifier at the
bottom. PyMOL has to be able to recognize the macro as one word, so no spaces are allowed within it.

Macros come in two flavors: those that begin with a slash and those that don't. The presence or absence of a
slash at the beginning of the macro determines how it is interpreted. If the macro begins with a slash, PyMOL
expects to find the fields starting from the top of the hierarchy: the first field to the right of the slash is
interpreted as an object−name; the second field as an identifier to segi; the third as an identifier to chain, and
so on. It may take any of the following forms:

 /object−name/segi−identifier/chain−identifier/resi−identifier/name−identifier
 /object−name/segi−identifier/chain−identifier/resi−identifier
 /object−name/segi−identifier/chain−identifier
 /object−name/segi−identifier
 /object−name

EXAMPLES

PyMOL> zoom /pept
PyMOL> show spheres, /pept/lig/
PyMOL> show cartoon, /pept/lig/a
PyMOL> color pink, /pept/lig/a/10
PyMOL> color yellow, /pept/lig/a/10/ca

If the macro does not begin with a slash, it is interpreted differently. In this case, PyMOL expects to find the
fields ending with the bottom of the hierarchy. Macros that don't start with a slash may take the following
forms:

resi−identifier/name−identifier
chain−identifier/resi−identifier/name−identifier

segi−identifier/chain−identifier/resi−identifier/name−identifier
object−name/segi−identifier/chain−identifier/resi−identifier/name−identifier

EXAMPLES

PyMOL> zoom 10/cb
PyMOL> show spheres, a/10−12/ca
PyMOL> show cartoon, lig/b/6+8/c+o
PyMOL> color pink, pept/enz/c/3/n

You can also omit fields between slashes. Omitted fields will be interpreted as wildcards, as in the following
forms:

resi−identifier/
resi−identifier/name−identifier
chain−identifier//
object−name//chain−identifier

EXAMPLES

PyMOL> zoom 142/ # Residue 142 fills the viewer.

PyMOL> show spheres, 156/ca # The alpha carbon of residue 156
 # is shown as a sphere

PyMOL> show cartoon, a// # Chain "A" is shown as a cartoon.

PyMOL> color pink, pept//b # Chain "B" in object "pept"
 # is colored pink.

Atom Selection Macros 36

Selection macros must contain at least one forward slash in order to distinguish them from other words in the
selection language. Being words, they must not contain any spaces. When using macros, it is also important to
understand that they are converted into long form before being submitted to the selection engine. This can
help in the interpretation of error messages.

Calling Python from within PyMOL
Single−line Python statements can be issued directly within PyMOL. For example:

PyMOL> print 1 + 2
3

Full access is available to standard Python library functions, and you can assign results to symbols.

PyMOL>import time
PyMOL>now = time.time()
PyMOL>print now
1052982734.94

Multi−line blocks of Python can be included within PyMOL command scripts provided that a backslash ('\') is
used for continuation on all but the final line.

PyMOL> for a in range(1,6): \
PyMOL> b = 6 − a \
PyMOL> print a, b
1 5
2 4
3 3
4 2
5 1

Calling Python from within PyMOL 37

Cartoon Representations
Background

Accessibility

Cartoon ribbons in PyMOL rival those of the popular Molscript/Raster3D packages, but PyMOL makes
creating high quality images much easier. While PyMOL can read Molscript output directly (see the chapter
on Molscript), this is no longer necessary or as convenient as utilizing PyMOL's built−in cartoon ribbon
capability:

PyMOL built−in ribbons "molauto −nice ... | molscript −r > ..."

Molscript's cartoons are slightly more ideal, but PyMOL comes pretty darn close!

Note that all of the images in this section were colored using the rainbow feature (Color pop−up menu) and
ray−traced with antialising enabled.

Pretty and Correct

One of the advantages of PyMOL's cartoon ribbon facility is that it is easy to switch between "smoothed"
versions of protein secondary structure, and "correct" renditions which portray actual main chain coordinates.
Although cartoons are often used solely to represent protein structures in a schematic sense, sometimes it is
desirable to combine a schematic overall picture with atomic resolution in one particular location. However,
unless the cartoon track properly with alpha−carbon positions, the resulting figures will look a little silly:

Cartoon Representations 38

In the above image, the side chains are floating off into space. Disabling "flat sheets" from the Cartoons Menu
or issuing the command

 set cartoon_flat_sheets, 0

will make the beta strands follow the true path of the backbone through space and give a more accurate
rendition of the structure.

The appearance of a cartoon over the entire molecule will be substantially different when all smoothing
features are turned off. For instance, with smoothing enabled:

 set cartoon_flat_sheets, 1
 set cartoon_smooth_loops, 1

Cartoon Representations 39

the image differs substantially from:

 set cartoon_flat_sheets, 0
 set cartoon_smooth_loops, 0

which more accurately reflects the true path of the peptide backbone:

Cartoon Representations 40

To facilitate beautiful imagery, smoothing is enabled by default (just like Molscript) [NOTE: THIS MAY
CHANGE BEFORE VERSION 1.0] . Just be sure to turn it off when you want to study structures at atomic
resolution (remember, real life is a bit more complicated than what you see in cartoons!).

Customization

Cartoon Types

Best results will be obtained when secondary structure information has been defined for each residue in the
molecule. Under these conditions, PyMOL will do extra processing to insure that good normals have been
calculated for helical regions, and perform smoothing of loops, where desired.

Also under such conditions, in automatic mode, cartoon representations will be assigned according to the
secondary structure type. However, you can instruct PyMOL to ignore such information, and manually control
when and where various cartoon representations are employed.

 show cartoon
 cartoon automatic # default

Customization 41

 cartoon loop

 cartoon rect

 cartoon oval

Customization 42

 cartoon tube

 cartoon tube, 1:49/
 cartoon arrow, 50:99/
 cartoon loop, 100:149/
 cartoon oval, 150:199/
 cartoon rect, 200:250/

Customization 43

All cartoon ribbons have associated parameters accessible from the "set" command which allow you to
change their appearance. See the chapter on Settings for more information.

Fancy Helices

set cartoon_fancy_helices, 0

Molscript addicts who simply must have those ribbon helices with tubular edges will not be disappointed with
"fancy helices":

set cartoon_fancy_helices, 1

Fancy Helices 44

Secondary Structure Assignment
It is recommended that you read in PDB files which already have correct secondary structure assignments
from a program like DSSP. However, PyMOL does have a reasonably fast secondary structure alignment
algorithm called "dss". Please be aware that due to the subjective nature of secondary structure assignment in
borderline cases, dss results will differ somewhat from DSSP.

SYNTAX

dss selection

EXAMPLE

 dss 1dfr

If you are visualizing an animation, you may wish derive secondary structure assignment from a specific state
of the animation. This can be done with:

SYNTAX

dss selection, state

EXAMPLE

 dss mov, 1

To change assignments manually, the best way is to use the alter command as follows:

show cartoon
alter 11−40/, ss='H' # assign residues 11−40 as helix
alter 40−52/, ss='L' # assign residues 40−52 as loop
alter 52−65/, ss='S' # assign residues 52−65 as sheet
alter 65−72/, ss='H' # assign residues 65−72 as helix
rebuild # regenerate the cartoon

Secondary Structure Assignment 45

Ray−Tracing
Ray−tracing produces the highest quality molecular graphics images. PyMOL is the first full−featured
molecular graphics program to include a high−speed ray−tracer which works with its native internal
geometries (except text).

OpenGL Rendering (real−time manipulation) Ray−traced Rendering (seconds or minutes per frame)
You can ray−trace any Scene in PyMOL by clicking the "Ray Trace" button in the external GUI or using the
"ray" command. The built−in raytracer also makes it possible to easily assemble very high−quality movies in
a snap.

Important Settings
These can be changed using the "set" command. Unless otherwise specified, the settings apply only to the
ray−tracing engine and not the OpenGL renderer. Some reconciliation between the two renderers is much
needed, so be warned that these settings may change in the future.

Normally, the only settings you will need to change are orthoscopic, antialias, and gamma. If you are down
in an enzyme active site which is heavily shadowed, you may want to increase direct to 0.5−0.7 in order to
improve brightness and contrast.

orthoscopic (0 or 1) controls whether the OpenGL renderer uses the same orthoscopic transformation
as the renderer. You'll want to set this to 1 when preparing figures so that OpenGL and raytracing
match pixel−for−pixel.

•

ambient (0.0−1.0) controls the ambient light intensity for both OpenGL and the ray−tracer.•
ambient_scale (float) controls the relative ambient intensity between OpenGL and the ray−tracer.•
antialias (0 or 1) generate a "smooth" image (best quality, but takes 4X as long).•
direct (0.0−1.0) the planer light intesity originating from the camera.•

Ray−Tracing 46

