
PyMOL User's Guide

written by
Warren L. DeLano, Ph.D.

with assistance from
Sarina Bromberg, Ph.D.

Copyright © 2004
DeLano Scientific LLC

All Rights Reserved.

Table of Contents
Copyright Notice and Usage Terms..1

Copyright Notice..1
Terms of Usage for the PyMOL User's Manual..1
Trademarks..1

Preface..2
Why PyMOL?..2
Words of Caution...2
Strengths..3
Weaknesses..3

Introduction...4
Welcome to PyMOL!...4
Is PyMOL Free Software?...4

Yes, but..4
The DeLano Scientific Mission...4

Installation...6
Windows..6

Recommendations...6
Minimal System Requirements...6
Python−Free Installation...6
Python−Dependent Installation...6

MacOS X...6
Recommendations...7
Minimial Requirements...7
If you use Fink...7
If you do not use Fink..7

Linux and Unix..8
System Requirements..8
Dependency−Free Approaches...8
Dependency−Based Approaches...9

Getting Started with Mouse Controls...10
Launching..10

Using the Mouse..10
Using a Command Line...10

PyMOL's Windows..11
The Viewer Window...11
The External GUI Window...12

Loading PDB Files...13
Manipulating the View..13

Basic Mouse Control...13
Virtual Trackball Rotation...14
Moving Clipping Planes..16
Changing the Origin of Rotation...16
Getting Comfortable..17

i

Table of Contents
Getting Started with Commands...18

Recording Your Work (Optional)..18
Loading Data..18
Manipulating Objects...19

Atom Selections..19
Coloring Objects and Selections...21
Turning Objects and Selections On and Off...22

 Changing Your Point of View..23
Saving Your Work...23

Scripts and Log Files...24
png Files..24
Session Files..25

Command−Line Shortcuts...25
Command Completion using TAB..26
Filename Completion using TAB..26
Automatic Inferences..26

 Other Typed Commands and Help...27

Command Syntax and Atom Selections..28
Syntax..28

Selection−expressions...28
Named Atom Selections..29
Single−word Selectors...31
Property Selectors..31
Selection Algebra..34
Atom Selection Macros...35

Calling Python from within PyMOL...37

Cartoon Representations..38
Background..38

Accessibility..38
Pretty and Correct..38

Customization..41
Cartoon Types...41
Fancy Helices..44

Secondary Structure Assignment...45

Ray−Tracing..46
Important Settings..46
Saving Images..47

png...47

Stereo..48
Introduction..48
Supported Stereo Modes..48

Crosseye Stereo...48
Walleye Stereo..48
Hardware Stereo..48

ii

Table of Contents
Stereo

Generating Stereo Figures..48

Movies..49
Concepts...49

States and Frames..49
Important Commands To Know..49

load..49
mset...49
mdo..50
mmatrix...50

Simple Examples...50
Complex Examples..51
Previewing Ray−traced Movie Images..51

cache_frames...51
mclear..51

Saving movies..51
mpng..52

Advanced Mouse Controls...53
Picking Atoms and Bonds..53
Example Usage of the "pk" Atom Selections..53
The "lb" and "rb" Selections..53
Conformational Editing...54

Crystallography Applications..55
Crystal Symmetry..55

load..55
symexp...55

Electron Density Maps...56
load..56
isomesh and isodot..56

Compiled Graphics Objects (CGOs) and Molscript Ribbons..57
Introduction..57
Molscript Ribbons..57

load..57
Using Molscript...57

Creating Compiled Graphics Objects..58
CGO Reference..59

load_cgo..59

Callback Objects and PyOpenGL...61
Introduction..61
Example...61

load_callback...62

iii

Copyright Notice and Usage Terms
Copyright Notice
The PyMOL User's Manual is Copyright © 1998−2004 DeLano Scientific LLC, San Carlos, California,
U.S.A. All Rights Reserved.

Terms of Usage for the PyMOL User's Manual
This manual is NOT free. It is a PyMOL Incentive Product created to help you use the program while also
generating recurring sponsorship for the project. This manual is made available for evaluation via the "honor"
system: You may evaluate this manual for a continuous period of up to one year without obligation. If
you wish to continue using this document beyond the end of the evaluation period, then you must become a
sponsor of the project by purchasing a PyMOL license and a subscription to maintenance and support from
DeLano Scientific LLC (http://www.delanoscientific.com).

Of course, if you are willing to sponsor the project today, then please don't wait a full year to start. The sooner
your sponsorship comes in, the sooner we can apply it to improve the software and documentation!

Existing PyMOL subscribers may use this manual for no additional cost. However, subscribers who do not
renew their subscription upon expiration must discountinue use of this and all other PyMOL Incentive
Products. Though we have no direct means of enforcing this, we ask, in recognition of our declared scientific
mission, that you honor the trust placed in you.

PyMOL users who are unable to sponsor the project by purchasing a PyMOL license and maintenance
subscription are welcome to use Open−Source versions of PyMOL and any free documentation that can be
found on the internet.

Trademarks
PyMOL, DeLano Scientific, and the DeLano Scientific Logo are trademarks of DeLano Scientific LLC.
Macintosh is a registered trademark of Apple Computer Inc., registered in the U.S. and other countries.
Windows is a registered trademark of Microsoft Corporation in the U.S. and other countries. Linux is a
trademark of Linus Torvalds. Unix is a trademark of The Open Group in the U.S. and other countries.
MolScript is a trademark of Avatar Software AB. All other trademarks are the property of their respective
owners.

This chapter last updated June 2004 by Warren L. DeLano, Ph.D.

Copyright © 2004 DeLano Scientific LLC. All rights reserved.

Copyright Notice and Usage Terms 1

Preface
Why PyMOL?
PyMOL is one lone scientist's answer to the frustration he encountered with existing visualization and
modeling software as a practicing computational scientist.

Anyone who has studied the remarkable complexity of a macromolecular structure will likely agree that
visualization is essential to understanding structural biology. Nevertheless, most researchers who use
visualization packages ultimately run up against limitations inherent in them which make it difficult or
impossible to get exactly what you need. Such limitations in a closed−source commercial software package
cannot be easily surmounted, and the same is still true for free programs which aren't available in source form.

Only open−source software allows you to surmount problems by directly changing and enhancing the way
software operates, and it places virtually no restrictions on your power and opportunity to innovate. For these
reasons, we believe that open−source software is an intrinsically superior research product and will
provide greatest benefit to computer−assisted scientific research over the long term.

Launched over Christmas break in December 1999, PyMOL was originally designed to: (1) visualize multiple
conformations of a single structure [trajectories or docked ligand ensembles] (2) interface with external
programs, (3) provide professional strength graphics under both Windows and Unix, (4) prepare publication
quality images, and (5) fit into a tight budget. All of these goals have since been realized. Although PyMOL is
far from perfect and lacks such desirable features such as a general "undo" capacity, it now has many useful
capabilities for the practicing research scientist. We hope that you will find PyMOL to be a valuable tool for
your work, and we encourage you to let us know what ideas you have for making it even better.

Words of Caution
About the Manual: This version of the manual has been updated for PyMOL version 0.86 (January 2003) but
is still quite rough. Prepare yourself for omissions, errors, and potentially obsolete information. Make an
informed decision to use the PyMOL manual at your own risk. Understand that thiss same caution applies to
the program as a whole −− you shouldn't be using PyMOL if you aren't willing to troubleshoot problems and
take the initiative on the mailing list in order to discover solutions.

About the program: PyMOL was created in an efficient but highly pragmatic manner, with heavy emphasis
on delivering powerful features to end users. Expediency has almost always taken precedence over elegance,
and adherence to established software development practices is inconsistent. PyMOL is about getting the job
done now, as fast as possible, by whatever means were available. PyMOL succeeds in meeting important
needs today, but we view it as merely an initial step in a promising direction.

In time, we hope that we and others will follow by creating PyMOL−like software platforms which meet the
needs of users but also provides the design rigor and code quality necessary to enable broad participation of
outside developers. Though PyMOL will undoubtably continue to expand and improve over the next decade,
we expectd that its long term impact will primarily be to inspire other development efforts having more time
and resources, and which will undoubtable achieve greater heights.

That isn't to say that you can't find good things about PyMOL's internal design. Indeed, we believe that there
are many successful and instructive aspects to the program. However, we just hope to appropriately calibrate
your expectations with respect to the code you will find if you with to "dive under to hood". Though the

Preface 2

program is Open−Source, it is best thought of as a dense, semi−opaque tool, best extended through Python
rather than as a C coding environment in which to embed new technologies.

Strengths
Cross−Platform. A single code base supports both Unix, Macintosh, and Windows, using OpenGL
and Python and a small set of Open−source external dependencies.

•

Command−Line and GUI Control Real world applications require both.•
Atom Selections. Arbitrary logical expressions facilitate focused visualization and editing.•
Molecular Splits/Joins. Structures can be sliced, diced, and reassembled on the fly and written out to
standard files (i.e. PDB).

•

Movies. Creating movies is as simple as loading multiple PDB files and hitting play.•
Surfaces. As good if not better than Grasp, and mesh surfaces are supported too.•
Cartoon Ribbons. PyMOL's cartoons are almost as nice as Molscript but are much easier to create
and render.

•

Scripting. The best way to control PyMOL is through reusable scripts, which can be written in the
command language or in Python.

•

Rendering. A built−in ray tracer gives you shadows and depth on any scene. You also render
externally.

•

Output. PNG files output from PyMOL can be directly imported into PowerPoint.•
Conformational Editing. Click and drag interface allows you to edit conformations naturally.
Sculpting allows the molecule to adapt to your changes.

•

Expandability. The PyMOL Python API provides a solid way to extend and interface.•

Weaknesses
User Interface. Development has been focused on capabilities, not on easy−of−use for new users.•
Documentation. Only recently has any documentation become available.•
Object−Orientation. There is a single monolithic, functional API.•
Electrostatics. PyMOL is not yet a replacement for Delphi/Grasp.•
No Mechanics Engine Although PyMOL sports potent molecular editing features, you can't yet
perform any "clean−up".

•

This chapter last updated January 2004 by Warren L. DeLano, Ph.D.

Strengths 3

Introduction
Welcome to PyMOL!
Over the years, PyMOL has become a capable molecular viewer with support for animations, high−quality
rendering, crystallography, and other common molecular graphics activities. It has been be adopted by many
hundreds (perhaps even thousands) of scientists spread over thirty countries. However, PyMOL is still very
much a work in progress, with development expected to continue for years to come.

Is PyMOL Free Software?

Yes, but...

PyMOL is Copyrighted software that is Free for all parties to use, modify, and redistribute. Because of
PyMOL's unusual status, you can be confident that the time you invest today in learning the package will
provide you with long term utility no matter where your career happens to takes you. You will never be
required to pay software license fees in order to use Open−Source PyMOL or to share it with others who
might find it useful.

Nevertheless, PyMOL is not free to develop, document, maintain, and support. If you decide to adopt the
package, then you are asked and expected to contribute to the project in some manner. Although such
contributions may take a variety of forms, most PyMOL supporters choose to sponsor the project by
purchasing (usually through their school or employer) a license and a renewable subscription to maintenance
and support. All such contributions are entirely volutary since we have intentionally abandoned the usual
means of compelling compliance. Instead, we depend on your free will to provide vital funding for
development and to cover other necessary expenses. In return, we provide specific incentives (called Incentive
Products) as a reward for helping to fund the project. Example incentive products include this manual, extra
features, enhanced platform−specific binary versions, and various other conveniences

Please take this request seriously. If you value PyMOL, then it is clearly in your interest to sponsor it. To find
out how to donate or to purchase a license, visit the PyMOL web site at http://www.pymol.org

The DeLano Scientific Mission
DeLano Scientific LLC is a private vision−centered software company which owns, develops, and supports
the PyMOL package. Our mission as a commercial entity is to create highly effective tools for scientific
research and to distribute them as broadly as possible while still succeeding as a healthy business. As a
"boot−strapped" company, DeLano Scientific is not beholden to any outside investors who would insist upon
maximum returns on investment. Thus, we have the rare privilege of being able to place Scientific and
Medical Progress ahead of Profit in our hierarchy of values.

We have chosen a free and open−source approach for PyMOL because we believe this strategy will have the
greatest positive impact on humanity. Visualization is key part of understanding the nature of life at the
molecular level, and powerful visualization tools need to be universally available to all students and scientists
if we are to make rapid progress in biomedical research. If PyMOL is successful, then we hope to expand the
scope of our endeavors to meet other critical research needs in related areas.

Introduction 4

Growth of the DeLano Scientific will depend entirely on the willingness of PyMOL users to adopt, nuture,
and advocate for our volitional approach to software funding. Eventually, we hope to evolve into a major
provider of scientific software for biomedical research and be distinguished by the quality, openness, and
accessibility of our products, the trusting and nonexploitive relationships we form with our customers, and our
willingness to work with all parties in advancing scientific software technologies.

This chapter last updated June 2004 by Warren L. DeLano, Ph.D.

Introduction 5

Installation
Windows

Recommendations

Windows 2000 or XP.•
A late−model 3D OpenGL compatible graphics accelerator card from nVidia, ATI, 3Dlabs or similar.•
512 MB RAM (768 MB or 1 GB preferred).•
3 Ghz Pentium 4 processor or similar.•

Minimal System Requirements

Windows 98 and ME, or later. PyMOL will not run on Windows 95 and NT.•
3D OpenGL compatible graphics accelerator card.•
256 MB RAM.•
500 Mhz Pentium 3 processor.•

Unless you have prior experience with Python, we recommend installing a version of PyMOL which does not
require an external Python interpreter. Avoid versions of which contain "−py21", "−py22", "−py23" or similar
in the filename.

Python−Free Installation

Download the ".zip" format archive. For example,

pymol−0_90−bin−win32.zip

1.

Extract the .zip file using WinZip (Windows XP can open .zip files directly).2.
Double click on the "Setup" or "Setup.exe" icon in the folder.3.
Answer the questions which follow.4.

You can now launch PyMOL from the Start menu.

Python−Dependent Installation

If you already have Python installed and wish to use PyMOL with that interpreter, the process is virtually
identical. The only difference is that you need to download a version of PyMOL which matches your desired
Python version in the filename. For example:

pymol−0_90−bin−win32−py22.zip would work with

Python−2.2.2.exe
 available from
http://www.python.org.

MacOS X

Installation 6

Recommendations

Mac OS 10.2.x or 10.3.x.•
Dual 2.0+ Ghz G5 system.•
GeForce4 or Radeon 9x00 OpenGL accelerator.•
1 GB of RAM.•

Minimial Requirements

Mac OS X 10.2.x•
Single 833 Mhz G4 system (will run on less, but performance is poor).•
3D OpenGL graphics acceleration.•
512 MB of RAM (1 GB recommended).•

If you use Fink

PyMOL is part of the Fink ports collection.

sudo −s
apt−get pymol install

should be sufficient to get a functioning instance on your system. However, it may not be the most recent
version. We also highly recommend installation of Apple's X Server, which enables PyMOL to access your
accelerated graphics hardware.

If you do not use Fink

Option 1: MacPyMOL

At the request of various Macintosh users, as well as Apple itself, we have created MacPyMOL, a special
native Aqua version of PyMOL for the Macintosh. The latest version of MacPyMOL can be downloaded from
http://delsci.com/macpymol.

However, note that this version is an Incentive Product only available to PyMOL sponsors (but students and
teachers are exempt from this requirement). For more information on MacPyMOL, contact
support@delanoscientific.com.

Option 2: PyMOL X11 Hybrid

This version of PyMOL includes a native Aqua−based OpenGL window and an X11−based Tcl/Tk external
GUI (graphical user interface). Before launching the PyMOL X11 Hybrid, you must have Apple's X11 server
installed and launched. The advantage of using this version is that it is fully compatible with Open−Source
PyMOL, and does not require Fink. However, unlike MacPyMOL, this version does not support direct export
of QuickTime movies. This binary build is free, but not Open−Source.

Download the "pymol−0_XX−bin−osx−x11−hybrid.dmg.gz" compressed disk image.1.
Extract the archive and mount the disk image.2.
Copy the "PyMOLX11Hybrid" folder to the main Applications folder on your hard disk.3.

You can then launch PyMOLX11Hybrid by double−clicking on the PyMOLX11Hybrid icon.

Recommendations 7

Linux and Unix

System Requirements

3D OpenGL graphics acceleration.•

There are a several different ways to install PyMOL on Linux. Please consult the PyMOL Web Site for
additional information.

Dependency−Free Approaches

These do not require installing any other packages in a privileged location on your system. All you need to do
is download a "tar"−ball appropriate for your system, such as the following:

pymol−0_93−bin−linux−libc6−i386.tgz (for Linux)•
pymol−0_93−bin−irix65−r10k.tgz (for SGI)•
pymol−0_93−bin−solaris8−sun4u.tgz (for Solaris)•

issue the following commands

gunzip < pymol−...−bin−...−.tgz | tar −xvf −
./setup.sh

which will install the program, and then

./pymol.com

will launch PyMOL. You may then want to make a symbol link for this file to ~/bin/pymol for easy
launching.

ln −s $PWD/pymol.com ~/bin/pymol

Install a minimal dependency binary build.

Compile PyMOL from source along with the "ext" dependencies distribution.

Because the installation process is often subject to change, please see the INSTALL file from the current
distribution for detailed instructions. In summary,

Download, extract, configure, and compile the external dependencies.1.
Download and extract the current PyMOL source distribution.2.
Create a symbolic link from the external dependencies to "ext" in the PyMOL directory.3.
Configure compilation by copying and modifying a "Rules.make" from the setup directory to reflect
your system.

4.

Run "make" to build pymol.5.
Create a pymol.com specific to your installation location.6.

You should be able to launch PyMOL by running pymol.com. I usually symbolic link this file into my "bin"
directory as "pymol".

Linux and Unix 8

Dependency−Based Approaches

You must install the following packages on your system

 python (2.x), tcl (8.x), tk (8.x), libpng (1.x), zlib (1.x),
 glut (3.x), glut−devel (3.x), pmw*, and numeric* (numpy)

(* = not required for RPM packages.)

You then have several choices:

Using RedHat binary packages (RPMs).

rpm −i pymol−0.90−1.rh73.py22.i386.rpm

Using Python's distutils to compile and install PyMOL as a standard Python module.

python setup.py build (as a user)
python setup.py install (as root)
python setup2.py install (as root)

You can now run PyMOL with "./pymol.com".

Using Makefiles with preinstalled system dependencies.

Because the installation process is often subject to change, please see the INSTALL file from the current
distribution for detailed instructions. In summary,

Download and extract the current PyMOL source distribution.1.
Configure PyMOL by copying and modifying a "Rules.make" from the "setup" directory to reflect
your system.

2.

Run "make" to build pymol.3.
Create a pymol.com specific to your installation location.4.

You should be able to launch PyMOL by running pymol.com, and it may be convenient to add a symbolic
link from this file into your "bin" directory as "pymol".

This chapter last updated June 2004 by Warren L. DeLano, Ph.D.

Dependency−Based Approaches 9

Getting Started with Mouse Controls
Launching

Using the Mouse

On Windows:

Click on the Start menu, follow it to Programs (or All Programs on Windows XP), and then release the
mouse on PyMOL.

On Mac OSX (native version)

Double−click on the PyMOL icon in the Applications folder on your main hard drive

Using a Command Line

Various command line options can be included under both Windows and Unix to automatically open files and
launch scripts. See "launching" in the reference manual for more information on these options.

On Windows:

At the command prompt, issue:

c:\program files\delano scientific\pymol\pymolwin.exe

If PyMOL in installed somewhere nonstandard, then use the correct drive letter and path.

On Unix, Linux, and MacOS X (Fink version)

If you installed using using a package such as an RPM, then there is a good chance that "pymol" is already in
your path. If not, then edit pymol.com in the PyMOL distribution and make sure PYMOL_PATH points to
the actual location of the distribution. Enter ./pymol.com to start pymol. You will probably want to create a
link "pymol" from this file in to a "bin" directory in your path so that you can launch the program anywhere
by simply entering "pymol".

Getting Started with Mouse Controls 10

PyMOL's Windows
PyMOL normally starts with two windows: The Viewer Window and the External (Tcl/Tk) GUI Window.

PyMOL's two windows.

GUI is an abbreviation for Graphical User Interface, which usually consists of menus, buttons, text boxes, and
other familiar gadgets. By default, PyMOL actually has two GUI's: (1) an "Internal" GUI which appears
inside the Viewer Window, and (2) an "External" GUI which appears inside of its own window. The reasons
for this are boring and technical, but know that both GUI's will eventually be unified into a single interface in
the future.

The Viewer Window

The PyMOL Viewer represents the heart of the PyMOL system. This is a single OpenGL window where all
3D graphics are displayed and where all direct user interaction with 3D models takes place.

PyMOL Viewer window with Internal GUI enabled (Default).

PyMOL's Windows 11

The Internal GUI contained within this window (right) allows you to perform actions on specific objects and
specific atom selections. From top to bottom, it contains an object list, a mouse button configuration matrix, a
frame indicator, and a set of "VCR"−like controls for working with movies.

The Viewer also contains a command line (bottom) which can be used to enter PyMOL commands. It is also
possible to view PyMOL text output in the Viewer window. you can hit the ESC key anytime to toggle
between text and graphics mode inside the Viewer window.

The PyMOL Viewer can be run all by itself, and it provides the complete capability of the PyMOL core
system. If desired, the Command line and Internal GUI can be disabled. Many tasks can be made easier and
more efficient through use of standard menus and controls. For the most part, such gadgets are currently found
in an External GUI window.

The External GUI Window

The default Tcl/Tk External GUI included with PyMOL.

By default, PyMOL comes with a single external GUI window which provides a standard menu bar, an output
region, a command input field, and a series of buttons. One important advantage of the external GUI window
is that standard "cut and paste" functions for text will only work within the External GUI, and not
within in the PyMOL Viewer. Furthermore, you must use Ctrl−X, Ctrl−C, and Ctrl−V to cut, copy, and
paste because a standard Edit menu has not yet been implemented.

Notes For Developers: External GUIs are the foundation for modularity and customizability in the PyMOL
system. These windows constitute independent processes (or threads) which can control the behavior of
PyMOL, and potentially interact with other programs. They are completely customizable at the Python
scripting level, and mutiple external GUIs can exist at once (within the restrictions of Tkinter and wxPython).

External GUIs communicate with PyMOL through the Python API (Application Programming Interface).
Those of you who want to link up you own programs with PyMOL should generally use a separate external
GUI window to control the interaction, rather than changing internal PyMOL code. That way the programs
will continue to work together even while development on each program proceeds independently. The
internal GUI and all external GUI windows can be enabled and disabled using simple command line options
(see reference for "launching").

The External GUI Window 12

Loading PDB Files
Using the External GUI Menu

The default external GUI provides a standard Open... item in the File menu which you can use to select the
file you wish to open.

Using Commands

 SYNTAX

 load <filename>

 EXAMPLE

 load test/dat/pept.pdb

PyMOL after loading a PDB file.

Manipulating the View
In PyMOL, the mouse is the primary control device, and keyboard modifier keys (SHIFT, CTRL,
SHIFT+CTRL) are used in order to modulate button behavior. A three button mouse is required for
effective use of PyMOL, but common mice such as the Microsoft Intellimouse and Microsoft Wheel Mouse
will work just fine under Windows.

Basic Mouse Control

On mice with a scroll wheel, you can push down on the wheel in order to use it as a middle button.

Loading PDB Files 13

Here is a table of the basic mouse button/keyboard combinations for view manipulation:

Keyboard Modifier Left Button Middle Button Right Button

(none) Rotate Camera
(Virtual Trackball)

Move Camera in XY
(In Plane of Screen)

Move Camera in Z
(Scale)

Shift Key Move Clipping Planes
Control Keys
Control and Shift Keys Set Origin of Rotation

An abbreviated version of this table, the Mouse Matrix, is always displayed in the Internal GUI, in order to
help you remember which key and mouse button performs which action:

L M R
None Rota Move MovZ
Shft Clip
Ctrl
CtSh Orig

When using PyMOL on a laptop, it may be necessary to attach an external mouse or reassign the particular
mouse controls you plan to use onto the reduced set of buttons that you have available internally (see
reference on the "button" command).

Virtual Trackball Rotation

Virtual Trackball Rotation 14

PyMOL's Virtual Trackball.

Virtual trackball rotation works as if there is an invisible ball in the center of the scene. When you click and
drag on the screen, it is as if you put your finger on the sphere and rotated it in approximately the same
manner. If you click outside the sphere, then you get rotation about the Z−axis only. Generally, the view will
be easiest to control by either clicking in the center of the scene and moving outwards (mostly XY−rotation),
or by clicking and draging around the edge of the screen and moving in a circular fashion (Z−rotation).

Virtual Trackball Rotation 15

Moving Clipping Planes

PyMOL's clipping plane control is somewhat unusual and may take a few minutes to get used to. Instead of
having separate controls for the front and back clipping planes, controls are combined into a single mode
where up−down mouse motion moves the front (near) clipping plane and left−right mouse motion
controls the back (far) clipping plane.

Control of clipping planes.

The advantage of the PyMOL clipping plane control is that tedious tandem manipulations of the clipping
planes now becomes easy through the diagonal motions shown below.

Changing the visible "wedge" by moving clipping planes in tandem.

You can also use the "clip" command to control the clipping planes.

Changing the Origin of Rotation

When visualizing molecules, it is frequently necessary to change the origin of rotation so that you can inspect
a particular region of the molecule. The fastest way to do this in PyMOL is to Control−Shift−Middle−Click
on a visible atom in the scene.

Moving Clipping Planes 16

Getting Comfortable

At this point, we recommend that you spend five or ten minutes getting comfortable with the controls
described in this chapter. Specifically, you should be able to accomplish the following tasks:

Load a PDB file into PyMOL.1.
Rotate, translate, and zoom the camera.2.
Adjust the front and back clipping planes to clearly view a slice of the molecule.3.
Change the origin of rotation about any particular atom of interest.4.

Getting Comfortable 17

Getting Started with Commands
This section steps through a typical PyMOL session, introducing typed commands and describing how
PyMOL responds to them. The details of command syntax are in the section titled "PyMOL Command
Language."

The PyMOL language is case−sensitive, but upper case is not used in the current package. So just remember
to type all your commands in lower case.

Recording Your Work (Optional)
While you are learning PyMOL or doing complex projects, you may want to keep a record of all the
commands you give in a plain text log−file that you can read and edit. To open a log−file, type the command
log_open followed by a file−name:

SYNTAX

 log_open log−file−name

EXAMPLE

PyMOL> log_open log1.pml

All your commands, typed or clicked, will be recorded in the log−file. You should give your log−file−name
the extension ".pml" so you can load the file as a script, to repeat your commands in a new session (see the
subsection titled "Sessions and Scripts" below).

To stop recording your commands, type log_close. If you don't type log_close before you exit PyMOL, your
log−file will still be saved to disk.

If you just want to save the current state of your PyMOL work without concern for the steps you took and the
commands you gave, you can create a session−file (see "Sessions and Scripts").

Loading Data
Next you need to input your data from a file, say atomic coordinates in PDB format:

SYNTAX

 load data−file−name

EXAMPLE

PyMOL> load $PYMOL_PATH/test/dat/pept.pdb

Given this command, PyMOL will open and read the file "pept.pdb," create and name a corresponding object,
display a representation of the object in the viewer, and add the object's name to the control panel.

By default, PyMOL names the object after the file it read. You can assign a different name to the object by
typing the name in the command line:

SYNTAX

Getting Started with Commands 18

 load data−file−name, object−name

EXAMPLES

PyMOL> load $PYMOL_PATH/test/dat/pept.pdb # The object is named "pept".
 # PyMOL doesn't use
 # the file−name extension
 # ".pdb" in the object−name.

PyMOL> load $PYMOL_PATH/test/dat/pept.pdb, test # The object is named "test".

(Note that "#" is a comment character, so anything you type to the right of "#" in a command line is not
interpreted by PyMOL.)

The command for loading a file follows typical PyMOL syntax. load is a keyword; it calls PyMOL to perform
a certain function. data−file−name and object−name are arguments to load. These arguments tell PyMOL
what file to load and what to name it, but in general, arguments to keywords just supply information that
PyMOL needs to carry out commands.

Manipulating Objects
After PyMOL creates an object, you can manipulate it in the view window and control panel with your mouse,
and also by typing commands. For example, you can change from the default representation, called lines, to
the more hefty sticks. First get rid of the lines and then show the sticks:

SYNTAX

 hide representation

 show representation

EXAMPLES

PyMOL> hide lines # The object shown in lines disappears from view.

PyMOL> show sticks # The object is represented as sticks in the viewer.

Other representations are cartoons, ribbons, dots, spheres, surfaces, and meshes (See the Section titled
"Representations").

Atom Selections

If you want to manipulate a subset of the atoms and bonds in a molecule, you can use atom selections.
PyMOL is pretty sophisticated when it comes to selecting, grouping and naming groups of atoms. For
example, you can select particular residues or atoms in a binding pocket, or a hydrophobic patch, or all the
alanines in a helix, and so on. The Section titled "PyMOL Command Language" gives the details for selecting
interesting groups of atoms.

You can use a selection just once, or you can name it to make it easier to use again later. For example, you can
zoom in on a selection "on the fly:"

SYNTAX

 zoom selection−expression # Select the atoms just for zooming.

Manipulating Objects 19

EXAMPLE

PyMOL> zoom resi 1−10 # The selector resi
 # chooses amino acid residues
 # given by the PDB sequence number
 # identifier "1−10."

Selection−expressions range from single words to long complicated expressions. An object−name may be a
selection−expression. The default selection−expression is all, which refers to all the atoms that are currently
loaded. If a selection−expression is missing, PyMOL will apply the command to all. We'll keep our
selection−expressions short in this section.

If you name the selection, you will be able to manipulate it any number of times. Object and selection names
may include the upper or lower case characters (A/a to Z/z), numerals (0 to 9), and the underscore character
(_). Characters to avoid include:

! @ # $ % ^ &* () ' " [] { } \ | ~ ` <> . ? /

First, name the selection:

SYNTAX

 select selection−name, selection−expression

EXAMPLES

PyMOL> select akeeper, resi 1−10 # Select the residues and name them "akeeper."

Then use it:

SYNTAX

 zoom selection−name

 hide representation, selection−name

 show representation, selection−name

EXAMPLES

PyMOL> zoom akeeper # Zoom in on them in the viewer.

PyMOL> hide everything, akeeper # Hide their representation in the viewer.

PyMOL> show spheres, akeeper # Show them in a different representation,
 # spheres, this time.

When you create a selection−name, PyMOL puts it in the control panel so you can apply control panel
functions to the selection using your mouse (See the section titled "PyMOL Command Language").

Named−selections such as "akeeper" are manipulated like PyMOL objects, but objects and named−selections
are fundamentally different. PyMOL creates an object−name to locate data when you load a data file. Making
selections is a way of pointing to a subset of that data. To distinguish selection−names from object−names,
selection−names are shown inside parentheses in the control panel.

Manipulating Objects 20

When you delete a selection−name, the data are still found under the object−name, but the data are no longer
organized as the selection. In contrast, after you delete an object, you must reload the data to have access to it
again.

SYNTAX

 delete selection−name

 delete object−name

EXAMPLES

PyMOL> delete akeeper # "akeeper" is gone, but the object remains.

PyMOL> delete pept # The atoms and bonds in "pept" are gone.

Coloring Objects and Selections

You can apply various colors to selections and objects using typed commands. Predefined color−names are
listed under the settings/colors pull−down menu. Many of them can be chosen from the control panel. See the
section titled "Settings" to find out how to define more colors.

SYNTAX

 color color−name # All the representations of
 # loaded objects are colored.

 color color−name, selection−expression # The representation of
 # the selection is colored.

EXAMPLES

PyMOL> color white # Everything turns white.
 # This looks fine on the
 # default black background,
 # but causes disappearance
 # if you've changed the background to white.

PyMOL> color orange, pept # Remember that "pept" is our object−name,
 # so the entire object is colored orange.

PyMOL> color green, resi 50+54+58 # The representation of
 # residues numbered 50, 54 and 58
 # is colored green.

PyMOL> color yellow, resi 60−90 # The representation of
 # residues numbered 60 through 90
 # is colored yellow.

PyMOL> color blue, akeeper # Residues numbered 1−10,
 # which were collected in
 # the named selection "akeeper,"
 # are colored blue.

PyMOL> color red, ss h # The representations of
 # helical residues
 # are colored red.

PyMOL> color yellow, ss s # The representations of

Coloring Objects and Selections 21

 # beta sheet residues
 # are colored yellow.

PyMOL> color green, ss l+"" # The representations of
 # loop and unassigned residues
 # are colored green.

In the last three examples, the selector ss chooses secondary structures specified by h for helix, s for beta
sheet strand and l+"" for loops and unspecified structures.

Turning Objects and Selections On and Off

PyMOL can hold several objects in memory at the same time. The commands disable and enable allow you
to eliminate representations of objects from the viewer while still controlling their properties with commands.

SYNTAX

 enable object−name

EXAMPLE

PyMOL> load $PYMOL_PATH/test/dat/fc.pdb
PyMOL> load $PYMOL_PATH/test/dat/pept.pdb

PyMOL> disable pept # All representations of "pept"
 # are removed from view.

PyMOL> color yellow, name c+o+n+ca # Backbone atoms in both "fc"
 # and "pept" are colored yellow,
 # but "pept" atoms
 # are still not visible.

PyMOL> enable pept # "pept" atoms are visible and
 # its backbone atoms are yellow.

You can also use the disable command to get rid of the pink dots that identify the last−named selection in the
viewer:

SYNTAX

 enable selection−name

EXAMPLE

PyMOL> select bb, name c+o+n+ca # Atoms included in the
 # named−selection are indicated
 # with pink dots in the viewer.

PyMOL> disable bb # The pink dots disappear,
 # but the named selection "bb"
 # is still visible.

PyMOL> color red, bb # You can still manipulate "bb."

You can still operate on the representations of objects that are disabled, even with the commands show and
hide. The results will be apparent when you subsequently enable the object.

Turning Objects and Selections On and Off 22

Changing Your Point of View
Dragging on a molecule with the mouse is often the easiest way to manouver, but typed commands such as
zoom and orient give you a different form of control, allowing computations to direct the view. zoom, as the
name suggests, brings an object or selection close up in the center of the field of view. If the object or
selection doesn't fit in the current view, the view opens out to include it. If it is just a small part of the current
view, the view closes in to fill more of the screen with it.

SYNTAX

 zoom selection−expression # The "camera" moves close
 # to the selection so it fills the viewer,
 # or moves further away to include
 # all of the selection in the viewer

orient is a useful command when you want a fresh start in viewing the molecule. It aligns the object or
selection so its largest dimension is shown horizontally, and its second largest dimension is shown vertically.

SYNTAX

 orient selection−expression # The selection is aligned
 # for maximum visibility in the viewer.

You can store orientations and recall them later in your PyMOL session using the command view. Storing a
view only saves the viewpoint on the objects in the viewer. It does not save their representation. To store a
view for later in the session, you need to "key" it, that is, to give a name or number as an argument to the
command view. A second argument tells PyMOL whether you want it to store the view or recall it.

SYNTAX

 view key, action # The possible actions are store and recall.

EXAMPLES

PyMOL> view v1, store # The current view is named "v1" and stored.

PyMOL> view v1, recall # The view keyed "v1" is restored.

PyMOL> view v1 # recall is the default argument to view,
 # so this also recalls "v1."

The keyword view only stores an orientation for the duration of the current PyMOL session. The next section
gives the recipe for saving and restoring views in different PyMOL sessions.

Saving Your Work
PyMOL saves your work in f kinds of processes: (1) Before you give a series of commands, you can initiate
the process of logging your commands into plain text log−files that can later be used as scripts. (2) At any
point in a PyMOL session you can save the memory state of the program by creating a session file that can
later be loaded to restore that memory state. (3) You can write a graphics file to store the image you have
created in the viewer for sharing or publication.

 Changing Your Point of View 23

Scripts and Log Files

A PyMOL script is just a text file, such as a log−file, containing typed PyMOL commands separated by
carriage returns. When a script is loaded into PyMOL the commands it contains are executed. PyMOL expects
scripts to have ".pml" file−name extensions (this is not strictly required, but it is good practice).

You can use log−files as scripts, and you can create scripts in a text editor such as emacs, jot, or notepad. It's
often useful to keep a text editor open in a separate window while using PyMOL. Commands can then be cut
and pasted between the two programs.

You can open a new log−file by typing log_open log−file−name, or by clicking on "log" under the "File"
menu and naming the log−file in the dialog box. You can also append commands to an existing log−file by
choosing "append" or "resume" in the "File" menu. When you "resume" rather than "append," the existing
log−file is first loaded as a script, and then subsequent commands are written to it.

Once you have opened a log−file in any of these ways, PyMOL will write and save all your commands,
whether they are typed or given by clicking on the buttons in the GUI.

However, to store the orientation of a molecule into a log−file, you need to give the command get_view (type
it or use the GUI button). You may find it convenient to get_view several times in a PyMOL session, and then
edit the log−file to select the most useful views.

Scripts can be executed in several ways. Under Windows, scripts can be run in a new PyMOL session by
double clicking on the script's icon. Alternatively, you can run a script using the "File" menu's "Run" option.
PyMOL also understands "@" as the typed command that loads a script:

SYNTAX

 @script−file−name

EXAMPLE

PyMOL> @my_script.pml

You can also include the script−file−name when launching PyMOL from a command line:

SYNTAX

 pymol script−file−name

EXAMPLE (Windows)

C:\> pymol.exe my_script.pml

EXAMPLE (Unix)

unix> ./pymol.com my_script.pml

png Files

Once you are satisfied with the representation and orientation of your molecule, you may want to save the
image in a graphics file. Before you do that, you can improve the quality of the graphics by switching from
PyMOL's fast default graphics engine, OpenGL, to its ray tracer. The ray tracer is slower, but produces higher

Scripts and Log Files 24

quality renderings for display and publication. Ray tracing shows how light is reflected and how shadows fall
in a three−dimensional world. Ray tracing may take some minutes for a large complex object. The keyword
ray calls PyMOL's raytracer to redraw and display the image in the view window (See the section titled "Ray
Tracing" for more details).

To save an image to a file, raytraced or not, use the "Save Image" option in the "File" menu or type the png
command:

SYNTAX

 png file−name

EXAMPLE

PyMOL> png $PYMOL_PATH/pep # The file−name extension ".jpeg" is
 # added. The image file "pep.jpeg" is stored
 # in a path below the PyMOL installation.

The PNG file format is directly readable by PowerPoint. It can be converted into other formats using a
package like ImageMagick.

Session Files

If you want to be able to return to the current state of PyMOL, then you can create a session−file (Choose
"Save Session" in the "File" menu and respond to the dialog box by naming the file with a ".pse" file−name
extension). This utility works like the "Save" utility in a word processing program. A PyMOL session−file is a
symbolic record of the state of PyMOL's memory, including the the objects that have been loaded or created,
the named−selections that have been created, and the display in the viewer.

When you open the saved session−file, PyMOL's memory returns to the state that was saved. Because a
session−file represents a PyMOL memory state, opening one means that you are eliminating everything that
you currently have in PyMOL's memory, and replacing it with the memory state from the session−file.

A session−file differs from a log−file or a script in a number of ways. You have to open a log−file before you
give the commands you want to save, but a session−file can be created at any point. A session−file is invoked
by choosing "open" under the file menu, while a log−file is "run" as a script. Also, you can't write or edit
session−files, as you can log−files and scripts.

It's a good idea to create session−files at strategic points in PyMOL sessions, for example, when you decide to
explore one of several options. In this way, session−files can be used to replace an "undo" utility, which
PyMOL lacks. You can store any number of PyMOL states in successive session−files, and revert to them,
effectively "undo"−ing the work you did since creating the session−file.

Command−Line Shortcuts
Since almost nobody likes to type, PyMOL's command−line interface includes several "shortcut" features
designed to reduce typing. If you are a unix user, you will recognize the similarity with features found in tcsh
or bash.

Session Files 25

Command Completion using TAB

If you type the first few characters of a command and then hit TAB, PyMOL will either complete the
command or print out a list of which commands match the command.

EXAMPLE

PyMOL> sel

 # hitting TAB will produce

PyMOL> select

If you hit the TAB key on a blank command line, PyMOL will output a list of its commands.

Filename Completion using TAB

Some of the files you need to load into PyMOL may have long paths and filenames. PyMOL makes it easier
to load such files by automatically completing unambiguous paths and filenames when you hit the TAB key.
For instance,

EXAMPLE

PyMOL> load cry

 # If "crystal.pdb" exists in the current directory, hitting TAB will generate

PyMOL> load cystal.pdb

If there is some ambiguity in the filename, PyMOL will complete the name up to the point of ambiguity and
then print out the matching files in the directory.

Automatic Inferences

There are a small number of "fixed string" arguments to PyMOL commands. For example, in

PyMOL> show sticks

"sticks" is a fixed string argument to show. Because there is only a small set of such arguments to show,
PyMOL will infer your meaning even if you only provide it with a few letters. For example

PyMOL> show st

works just as well.

Keywords are also inferred in this manner, so

PyMOL> sh st

works too, as long as show is the PyMOL only command starting with "sh".

Command Completion using TAB 26

NOTE: PyMOL's command language continues to grow and develop, so it is important to use full−length
commands and string arguments in scripts. Otherwise, you could not be sure that a later command or
argument would not cause your abbreviation to become ambiguous. For example, "sh st" would no longer
work if a shutoff command were added to the PyMOL language.

Other Typed Commands and Help
This "Getting Started" section used the most frequent PyMOL commands in very brief examples. The section
titled "Simple Examples" shows other commands that combine representations, selections and property
changes. More complicated examples appear in the section titled "Cookbook and Complex Examples," and a
comprehensive listing of typed commands appears in the section titled "Command and API Reference."

To see a list of the keyword commands that are available in PyMOL on your computer screen, type help and
"enter" (Typing TAB and "enter" will work too). Add the keyword if you want help on a particular command:

SYNTAX

 help keyword

EXAMPLE

PyMOL> help load

PyMOL responds by displaying the manual page that discribes the command in the PyMOL viewer.
Command line completion works inside of help, so if you don't remember the full keyword, type help, the
first character or so of the keyword, and hit TAB. Python will display a list of possible help topics.

Click inside the viewer and hit escape to toggle back and forth between the display of the manual page or the
list of commands and the molecules you have loaded in PyMOL.

All the keywords that PyMOL understands are listed alphabetically and described in the "Reference" section.
PyMOL commands run on top of the Python programming language and may contain Python statements.
After you type in a command and hit return, PyMOL will check whether the first word is one of its keywords
(or if it can be extended into a keyword). If not, PyMOL will pass the command on to the Python interpreter.
PyMOL will return a Python error message if neither a PyMOL nor a Python keyword is recognized.

 Other Typed Commands and Help 27

Command Syntax and Atom Selections
Syntax
A typed PyMOL command always starts with a keyword that calls PyMOL to execute an action. It ends with a
carriage return ("enter" on your keyboard).

The simplest commands consist of a keyword alone. For example, typing quit will end your PyMOL session.
The quit command never takes an argument.

Many commands have default arguments, so you can type the keyword alone and PyMOL will supply the rest.
For example, the default argument to zoom is the selection−expression all:

EXAMPLE

PyMOL> zoom # All visible representations
 # are included in the view.

For some keywords, certain arguments are required and others are supplied by default. For example, the
keyword color requires one argument, the color−name. As for zoom, the default selection−expression is all:

SYNTAX

 color color−name

 color color−name, selection−expression

EXAMPLES

PyMOL> color red # All the representations
 # are colored red.

PyMOL> color red, name ca # Only the representations of
 # atoms named c−alpha are colored red.

When you type a command that has more than one argument, color color−name, selection−expression in this
case, a comma must separate the arguments.

Selection−expressions are an essential type of keyword argument. They can be simple or complex, with
several different kinds of syntax.

Selection−expressions

Selection−expressions stand for lists of atoms in arguments that are subject to PyMOL commands. You can
name the selections to facilitate their re−use, or you can specify them anonymously (without names). Object
and selection names may include the upper or lower case characters A/a to Z/z, numerals 0 to 9, and the
underscore character (_). Characters to avoid include:

! @ # $ % ^ &* () ' " [] { } \ | ~ ` <> . ? /

Selection−expressions describe the class of atoms you are referencing. Most of them require identifiers to
complete the specification. For example, the selector resi references biopolymer residues by sequence

Command Syntax and Atom Selections 28

number, and the identifier gives the number. The selector name references atoms according to the names
described in the PDB, and the identifier gives the name (ca for alpha carbons, cb for beta carbons, etc). A
handful of selection−expressions don't require identifiers, but most do.

PyMOL uses several logical operators to increase the generality or specificity of selection−expressions.
Logical combinations of selectors can get complex, so PyMOL accepts short forms and macros that express
them with a minimum of keystrokes. This section describes named−selections, and then gives the syntax for
making selections in a progression from simple one−word selectors to complex combinations of selectors,
using macros and short forms.

Named Atom Selections

Atom selections can be named for repeated use by using the select command:

SYNTAX

 select selection−name, selection−expression
 # The selection−name and
 # the selection−expression
 # are both arguments to select
 # so they are separated by a comma.

EXAMPLE

PyMOL> select bb, name c+o+n+ca # Create an atom selection named "bb"
 # including all atoms named
 # "C","O","N", or "CA";

PyMOL> color red, bb # color the selection red,
PyMOL> hide lines, bb # hide the line representation,
PyMOL> show sticks, bb # show it using the stick representation,
PyMOL> zoom bb # and zoom in on it.

In this case, the selection−expression is the property selector name, which takes the list of identifiers
ca+c+n+o to complete the specification. Property selectors and their identifiers are discussed below.

Named atom selections appear in the PyMOL names list in the control panel. They are distinguished from
objects by a surrounding set of parentheses. The control panel options available under the diamond menu
differ between objects and atom−selections, because objects and named selections play slightly different roles
in PyMOL. Named selections are pointers to subsets of data that are found under an object name. After an
object is deleted, the data are no longer available, unless you reload the object. Any named selections that
refer to atoms in that object will no longer work. But when named selections are deleted, the data are still
available under the object name. Disabling objects eliminates them from the viewer, but disabling
named−selections just turns off the pink dots that highlight them in the viewer.

Atom−selections, named or not, can span multiple objects:

EXAMPLE

PyMOL> load $PYMOL_PATH/test/dat/fc.pdb
PyMOL> load $PYMOL_PATH/test/dat/pept.pdb

PyMOL> select alpha_c, name ca # The named selection "alpha_c"
 # is created −− it includes atoms
 # in both "fc" and "pept" objects.

PyMOL> color red, name ca # "CA" atoms in both objects

Named Atom Selections 29

