设为首页收藏本站

中国病毒学论坛|我们一直在坚持!

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
热搜: 活动 交友 discuz
查看: 886|回复: 0
打印 上一主题 下一主题

[转移帖]Volker Bruss 慕尼黑——HBV相关实验室及人物介绍系列

[复制链接]

1210

帖子

614

学分

1996

金币

论坛区长

Rank: 9Rank: 9Rank: 9Rank: 9

积分
614
跳转到指定楼层
楼主
发表于 2015-8-28 14:12:24 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
原帖由bigben发表于 2009-10-8 18:59 :

http://www.virologie.med.tu-muenchen.de/en/forschung-tum/ag-bruss/

Prof. Dr. Volker Bruss

Institute of Virology
TU Munich
Schneckenburgerstr. 8
81675 München
Germany

AG Bruss - Molecular biology of hepatitis B viruses
About 1/3 of the global human population is or has been infected with the hepatitis B virus (HBV) and 350 million people are persistent virus carriers being at risk to develop liver cirrhosis or liver cancer. An effective vaccine is available to prevent new infections. However, chronic infections and the resulting liver diseases are still serious medical problems and available therapies of limited efficacy. The development of new or the improvement of existing therapeutic concepts on a rational basis requires a deep knowledge of the biology of HBV on a molecular level.

Research topics
The work group “Molecular HBV Biology” studies several aspects of the viral life cycle:


(i) The virus particle is formed by the assembly of an icosahedral capsid containing the viral genome in the cytosol of the hepatocyte and subsequent envelopment of the capsid at an internal cellular membrane containing viral proteins. This envelopment or budding process translocates the capsid across the cellular membrane and allows the release of the infectious virus into the blood stream by the secretion machinery of the cell. A very specific interaction between the capsid surface and cytoplasmic domains of viral membrane proteins are required for and probably drive the envelopment process. We try to describe the molecular surfaces of capsid and envelope involved in budding. In addition we want to use this step as an antiviral target by developing small molecules specifically blocking capsid-envelope interactions.

(ii) During capsid formation a viral RNA molecule is packaged in the lumen together with a viral reverse transcriptase. This early, RNA containing, “immature” capsid is incompetent for budding. The reverse transcription of the RNA molecule in the capsid lumen generates the viral DNA genome. The capsid is then named “mature” and becomes competent for envelopment. We want to understand the molecular difference between immature and mature capsids and how this envelopment signal is generated.

(iii) After infection the viral DNA genome enters the nucleus and stays there as a covalently closed circular (ccc) molecule in an episomal state. Current therapies of HBV infections are not capable of directly reducing the amount of viral ccc DNA. Therefore, the virus often recurs after cessation of an antiviral therapy. We want to understand the steps leading from the open circular viral DNA genome in the capsid to the ccc DNA form of the genome in the nucleus and the cellular factors involved in this process.

A. Original publications
1. Ponsel D and Bruss V (2003) Mapping of amino acid side chains on the surface of hepatitis B virus capsids required for envelopment and virion formation. J Virol 77:416-422.

2. Kluge B, Schläger M, Pairan A, and Bruss V (2005) Determination of the minimal distance between the matrix and transmembrane domains of the large hepatitis B virus envelope protein. J Virol 79:7918-7921.

3. Schormann W, Kraft A, Ponsel D, and Bruss V (2006) Hepatitis B virus particle formation in the absence of pregenomic RNA and reverse transcriptase. J Virol 80:4187-4190.

4. Gudima S, He Y, Meier A, Chang J, Chen R, Jarnik M, Nicolas E, Bruss V, and Taylor J (2007) Assembly of hepatitis delta virus: particle characterization, including the ability to infect primary human hepatocytes. J Virol 81:3608-3617.

5. Gudima S, Meier A, Dunbrack R, Taylor J, and Bruss V (2007) Two potentially important elements of the hepatitis B virus large envelope protein are dispensable for the infectivity of hepatitis delta virus. J Virol 81:4343-44347.

B. Book Chapters
6. Gerlich WH, Bruss V, Heermann KH, Marquard O und Seifer M (1987) Presurface and precore products of human hepatitis B virus. In: Robinson W, Koike K und Will H (Herausgeber), “Hepadnaviruses”, UCLA Symposia on Molecular and Cellular Biology, New Series, Vol 70, p. 147-160. Alan R. Liss, Inc. New York.

7. Gerlich WH, Heermann KH, Bruss V, Höhne M, Krone B, Schaefer S und Seifer M (1988) Structure, expression and potential oncogenicity of hepatitis B virus proteins. In: Bannasch P und Keppler D (Herausgeber), “Liver Carcinoma”, p.139-163, Kluver, Dordrecht.

8. Melegari M, Bruss V und Gerlich WH (1991) The arginine-rich carboxy-terminal domain is necessary for RNA packaging by hepatitis B core protein. In Hollinger FB, Lemon SM und Margolis HS (Herausgeber), „Viral hepatitis and liver disease”, p. 164-168, Williams and Wilkins, Baltimore, USA.

9. Gerlich WH und Bruss V (1993) Functions of hepatitis B virus proteins and molecular targets for protective immunity. In: Ellis RW (Herausgeber), “Hepatitis B vaccines in clinical practice”, p. 41-82, Marcel Dekker, New York.

10. Bruss V (2004) Processing of hepatitis B virus surface proteins. Methods Mol Med 95:189-198.

C. Reviews
11. Bruss V (2007) Hepatitis B virus morphogenesis. World J Gastroenterol 13:65-73.  

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 支持支持 反对反对
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|论坛App下载|Archiver|小黑屋|中国病毒学论坛    

GMT+8, 2024-11-23 15:11 , Processed in 0.101614 second(s), 28 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表